Do you want to publish a course? Click here

Optimizing the tight-binding parametrization of the quasi-one-dimensional superconductor K2Cr3As3

66   0   0.0 ( 0 )
 Added by Giuseppe Cuono
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the tight-binding dispersion of the recently discovered superconductor K2Cr3As3, obtained from Wannier projection of Density Functional Theory (DFT) results. In order to establish quantitatively the actual degree of quasi-one dimensionality of this compound, we analyze the electronic band structure for two reduced sets of hopping parameters: one restricted to the Cr-As tubes and another one retaining a minimal number of in-plane hoppings. The corresponding total and local density of states of the compound are also computed with the aim of assessing the tight-binding results with respect to the DFT ones. We find a quite good agreement with the DFT results for the more extended set of hopping parameters, especially for what concerns the orbitals that dominate at the Fermi level. Accordingly, we conclude that one cannot avoid taking into account in-plane hoppings up to the next-nearest-neighbors cells even only to describe correctly the Fermi surface cuts and the populations along the kz direction. Such a choice of a minimal number of hopping parameters directly reflects in the possibility of correctly describing correlations and magnetic interactions.



rate research

Read More

We present a systematic derivation of a minimal five-band tight-binding model for the description of the electronic structure of the recently discovered quasi one-dimensional superconductor K2Cr3As3. Taking as a reference the density-functional theory (DFT) calculation, we use the outcome of a Lowdin procedure to refine a Wannier projection and fully exploit the predominant weight at the Fermi level of the states having the same symmetry of the crystal structure. Such states are described in terms of five atomic-like d orbitals: four planar orbitals, two dxy and two dx2-y2, and a single out-of-plane one, dz2 . We show that this minimal model reproduces with great accuracy the DFT band structure in a broad energy window around the Fermi energy. Moreover, we derive an explicit simplified analytical expression of such model, which includes three nearest-neighbor hopping terms along the z direction and one nearest-neighbor term within the xy plane. This model captures very efficiently the energy spectrum of the system and, consequently, can be used to study transport properties, superconductivity and dynamical effects in this novel class of superconductors.
The superconducting state of the newly discovered superconductor K$_2$Cr$_3$As$_3$ with a quasi-one-dimensional crystal structure ($T_{bf c}sim$ 6 K) has been investigated by using magnetization and muon-spin relaxation or rotation ($mu$SR) measurements. Our analysis of the temperature dependence of the superfluid density obtained from the transverse field (TF) $mu$SR measurements fit very well to an isotropic $s$-wave character for the superconducting gap. Furthermore a similarly good fit can also be obtained using a $d$-wave model with line nodes. Our zero-field $mu$SR measurements do reveal very weak evidence of the spontaneous appearance of an internal magnetic field near the transition temperature, which might indicate that the superconducting state is not conventional. This observation suggests that the electrons are paired via unconventional channels such as spin fluctuations, as proposed on the basis of theoretical models of K$_2$Cr$_3$As$_3$. Furthermore, from our TF $mu$SR study the magnetic penetration depth $lambda_L$, superconducting carrier density $n_s$, and effective-mass enhancement $m^*$ have been estimated to be $lambda_L(0)$ = 454(4) nm, $n_s$ = 2.4$times$10$^{27}$ carriers/m$^3$, and $m^*$ = 1.75 $m_e$, respectively.
188 - Cheng Huang , Jing Guo , Kang Zhao 2020
Here we report a pressure-induced reemergence of superconductivity in recently discovered superconductor K2Mo3As3, which is the first experimental case observed in quasi-one-dimensional superconductors. We find that, after full suppression of the ambient-pressure superconducting (SC-I) state at 8.7 GPa, an intermediary non-superconducting state sets in and prevails to the pressure up to 18.2 GPa, however, above this pressure a new superconducting (SC-II) state appears unexpectedly. High pressure x-ray diffraction measurements demonstrate that the pressure-induced dramatic change of the lattice parameter c contributes mainly to the emergence of the SC-II state. Combined with the theioretical calculations on band strcture, our results suggest that the reemergemce of superconductivity is associated with the change of the complicated interplay among different orbital electrons, driven by the pressure-induced unisotropic change of the lattice.
Long-range order in quasi-one-dimensional (q1D) arrays of superconducting nanowires is established via a dimensional crossover from a fluctuating 1D regime to a phase-coherent 3D ground state. If a homogeneous crystalline superconductor exhibits sufficiently high uniaxial anisotropy, a similar 1D$rightarrow$3D crossover has been predicted to occur, provided that single-particle hopping transverse to the 1D axis is absent in the normal state. Here we present magnetic penetration depth and electrical transport data in single crystals of q1D Tl$_2$Mo$_6$Se$_6$, which reveal a 1D$rightarrow$3D superconducting dimensional crossover. Both experimental techniques uncover multiple energy scales within the superconducting transition, which describe a sequence of fluctuating regimes. As the temperature is reduced below $T_{ons}=$~6.7~K, 1D pairing fluctuations are replaced by 1D phase slips below $T_psim$~5.9~K. These give way to 3D phase fluctuations below $T_{ab}=$~4.9~K, prior to dimensional crossover at $T_{x2}sim$~4.4~K. The electrical resistivity below $T_{ab}$ is quantitatively consistent with the establishment of phase coherence through gradual binding of Josephson vortex strings to form 3D loops. An anomalously low superfluid density persist down to $sim$3~K before rising steeply --- in agreement with a theoretical model for crossovers in q1D superconductors, and suggesting that a small population of unbound, weakly-pinned vortices survives below the crossover. The observation of a dimensional crossover within the superconducting state has important consequences for the low-temperature normal state in Tl$_2$Mo$_6$Se$_6$ and similar q1D metals, which may exhibit one-dimensional behavior over far greater temperature ranges than band structure calculations suggest.
178 - H. Z. Zhi , T. Imai , F. L. Ning 2015
We report $^{75}$As NMR measurements on the new quasi one-dimensional superconductor K$_{2}$Cr$_{3}$As$_{3}$ ($T_{c} sim 6.1$~K) [J. K. Bao et al., Phys. Rev. X {bf 5}, 011013 (2015)]. We found evidence for strong enhancement of Cr spin fluctuations above $T_c$ in the [Cr$_{3}$As$_{3}$]$_{infty}$ double-walled subnano-tubes based on the nuclear spin-lattice relaxation rate $1/T_{1}$. The power law temperature dependence, $1/T_{1}T sim T^{-gamma}$ ($gamma sim 0.25$), is consistent with the Tomonaga-Luttinger liquid. Moreover, absence of the Hebel-Slichter coherence peak of $1/T_{1}$ just below $T_{c}$ suggests unconventional nature of superconductivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا