Do you want to publish a course? Click here

Frictional rigidity percolation and minimal rigidity proliferation: From a new universality class to superuniversality

104   0   0.0 ( 0 )
 Added by J. M. Schwarz
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce two new concepts, frictional rigidity percolation and minimal rigidity proliferation, to help identify the nature of the frictional jamming transition as well as significantly broaden the scope of rigidity percolation. For frictional rigidity percolation, we construct rigid clusters in two different lattice models using a $(3,3)$ pebble game, while taking into account contacts below and at the Coulomb threshold. The first lattice is a honeycomb lattice with next-nearest neighbors, the second, a hierarchical lattice. For both, we generally find a continuous rigidity transition. Our numerical results suggest that, for the honeycomb lattice, the exponents associated with the transition found with the frictional $(3,3)$ pebble game are distinct from those of a central-force $(2,3)$ pebble game. We propose that localized motifs, such as hinges, connecting rigid clusters that are allowed only with friction could give rise to this new frictional universality class. However, the closeness of the order parameter exponent between the two cases hints at potential superuniversality. To explore this possibility, we construct a bespoke cluster generating algorithm invoking generalized Henneberg moves, dubbed minimal rigidity proliferation. The minimally rigid clusters the algorithm generates appear to be in the same universality class as connectivity percolation, suggesting superuniversality between all three types of transitions. Finally, the hierarchical lattice is analytically tractable and we find that the exponents depend both on the type of force and on the fraction of contacts at the Coulomb threshold. These combined results allow us to compare two universality classes on the same lattice via rigid clusters for the first time to highlight unifying and distinguishing concepts within the set of all possible rigidity transitions in disordered systems.



rate research

Read More

Rigidity percolation (RP) occurs when mechanical stability emerges in disordered networks as constraints or components are added. Here we discuss RP with structural correlations, an effect ignored in classical theories albeit relevant to many liquid-to-amorphous-solid transitions, such as colloidal gelation, which are due to attractive interactions and aggregation. Using a lattice model, we show that structural correlations shift RP to lower volume fractions. Through molecular dynamics simulations, we show that increasing attraction in colloidal gelation increases structural correlation and thus lowers the RP transition, agreeing with experiments. Hence colloidal gelation can be understood as a RP transition, but occurs at volume fractions far below values predicted by the classical RP, due to attractive interactions which induce structural correlation.
69 - Shae Machlus , Shang Zhang , 2020
Rigidity percolation (RP) is the emergence of mechanical stability in networks. Motivated by the experimentally observed fractal nature of materials like colloidal gels and disordered fiber networks, we study RP in a fractal network. Specifically, we calculate the critical packing fractions of site-diluted lattices of Sierpinski gaskets (SGs) with varying degrees of fractal iteration. Our results suggest that although the correlation length exponent and fractal dimension of the RP of these lattices are identical to that of the regular triangular lattice, the critical volume fraction is dramatically lower due to the fractal nature of the network. Furthermore, we develop a simplified model for an SG lattice based on the fragility analysis of a single SG. This simplified model provides an upper bound for the critical packing fractions of the full fractal lattice, and this upper bound is strictly obeyed by the disorder averaged RP threshold of the fractal lattices. Our results characterize rigidity in ultra-low-density fractal networks.
Renormalization group calculations are used to give exact solutions for rigidity percolation on hierarchical lattices. Algebraic scaling transformations for a simple example in two dimensions produce a transition of second order, with an unstable critical point and associated scaling laws. Values are provided for the order parameter exponent $beta = 0.0775$ associated with the spanning rigid cluster and also for $d u = 3.533$ which is associated with an anomalous lattice dimension $d$ and the divergence in the correlation length near the transition. In addition we argue that the number of floppy modes $F$ plays the role of a free energy and hence find the exponent $alpha$ and establish hyperscaling. The exact analytical procedures demonstrated on the chosen example readily generalize to wider classes of hierarchical lattice.
We revisit the concept of minimal rigidity as applied to soft repulsive, frictionless sphere packings in two-dimensions with the introduction of the jamming graph. Minimal rigidity is a purely combinatorial property encoded via Lamans theorem in two-dimensions. It constrains the global, average coordination number of the graph, for example. However, minimal rigidity does not address the geometry of local mechanical stability. The jamming graph contains both properties of global mechanical stability at the onset of jamming and local mechanical stability. We demonstrate how jamming graphs can be constructed using local moves via the Henneberg construction such that these graphs fall under the jurisdiction of correlated percolation. We then probe how jamming graphs destabilize, or become unjammed, by deleting a bond and computing the resulting rigid cluster distribution. We also study how the system restabilizes with the addition of new contacts and how a jamming graph with extra/redundant contacts destabilizes. The latter endeavor allows us to probe a disc packing in the rigid phase and uncover a potentially new diverging lengthscale associated with the random deletion of contacts as compared to the study of cut-out (or frozen in) subsystems.
126 - Xiangjun Xing 2003
We study the flat phase of nematic elastomer membranes with rotational symmetry spontaneously broken by in-plane nematic order. Such state is characterized by a vanishing elastic modulus for simple shear and soft transverse phonons. At harmonic level, in-plane orientational (nematic) order is stable to thermal fluctuations, that lead to short-range in-plane translational (phonon) correlations. To treat thermal fluctuations and relevant elastic nonlinearities, we introduce two generalizations of two-dimensional membranes in a three dimensional space to arbitrary D-dimensional membranes embedded in a d-dimensional space, and analyze their anomalous elasticities in an expansion about D=4. We find a new stable fixed point, that controls long-scale properties of nematic elastomer membranes. It is characterized by singular in-plane elastic moduli that vanish as a power-law eta_lambda=4-D of a relevant inverse length scale (e.g., wavevector) and a finite bending rigidity. Our predictions are asymptotically exact near 4 dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا