No Arabic abstract
We provide the first information theoretic tight analysis for inference of latent community structure given a sparse graph along with high dimensional node covariates, correlated with the same latent communities. Our work bridges recent theoretical breakthroughs in the detection of latent community structure without nodes covariates and a large body of empirical work using diverse heuristics for combining node covariates with graphs for inference. The tightness of our analysis implies in particular, the information theoretical necessity of combining the different sources of information. Our analysis holds for networks of large degrees as well as for a Gaussian version of the model.
We study community detection in the contextual stochastic block model arXiv:1807.09596 [cs.SI], arXiv:1607.02675 [stat.ME]. In arXiv:1807.09596 [cs.SI], the second author studied this problem in the setting of sparse graphs with high-dimensional node-covariates. Using the non-rigorous cavity method from statistical physics, they conjectured the sharp limits for community detection in this setting. Further, the information theoretic threshold was verified, assuming that the average degree of the observed graph is large. It is expected that the conjecture holds as soon as the average degree exceeds one, so that the graph has a giant component. We establish this conjecture, and characterize the sharp threshold for detection and weak recovery.
Much of the complexity of social, biological, and engineered systems arises from a network of complex interactions connecting many basic components. Network analysis tools have been successful at uncovering latent structure termed communities in such networks. However, some of the most interesting structure can be difficult to uncover because it is obscured by the more dominant structure. Our previous work proposes a general structure amplification technique called HICODE that uncovers many layers of functional hidden structure in complex networks. HICODE incrementally weakens dominant structure through randomization allowing the hidden functionality to emerge, and uncovers these hidden structure in real-world networks that previous methods rarely uncover. In this work, we conduct a comprehensive and systematic theoretical analysis on the hidden community structure. In what follows, we define multi-layer stochastic block model, and provide theoretical support using the model on why the existence of hidden structure will make the detection of dominant structure harder compared with equivalent random noise. We then provide theoretical proofs that the iterative reducing methods could help promote the uncovering of hidden structure as well as boosting the detection quality of dominant structure.
With ever-increasing amounts of online information available, modeling and predicting individual preferences-for books or articles, for example-is becoming more and more important. Good predictions enable us to improve advice to users, and obtain a better understanding of the socio-psychological processes that determine those preferences. We have developed a collaborative filtering model, with an associated scalable algorithm, that makes accurate predictions of individuals preferences. Our approach is based on the explicit assumption that there are groups of individuals and of items, and that the preferences of an individual for an item are determined only by their group memberships. Importantly, we allow each individual and each item to belong simultaneously to mixtures of different groups and, unlike many popular approaches, such as matrix factorization, we do not assume implicitly or explicitly that individuals in each group prefer items in a single group of items. The resulting overlapping groups and the predicted preferences can be inferred with a expectation-maximization algorithm whose running time scales linearly (per iteration). Our approach enables us to predict individual preferences in large datasets, and is considerably more accurate than the current algorithms for such large datasets.
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs. By utilizing fast matrix block-approximation techniques, we propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions, while being able to meaningfully model both local information of the graph (e.g., degrees) as well as global information (e.g., clustering coefficient, assortativity, etc.) if desired. This allows one to efficiently generate random networks with similar properties as an observed network, and the models can be used for several downstream tasks such as link prediction. Our methods are scalable to sparse graphs consisting of millions of nodes. Empirical evaluation demonstrates competitiveness in terms of both speed and accuracy with state-of-the-art methods -- which are typically based on embedding the graph into some low-dimensional space -- for link prediction, showcasing the potential of a more direct and interpretable probabalistic model for this task.
Methods for ranking the importance of nodes in a network have a rich history in machine learning and across domains that analyze structured data. Recent work has evaluated these methods though the seed set expansion problem: given a subset $S$ of nodes from a community of interest in an underlying graph, can we reliably identify the rest of the community? We start from the observation that the most widely used techniques for this problem, personalized PageRank and heat kernel methods, operate in the space of landing probabilities of a random walk rooted at the seed set, ranking nodes according to weighted sums of landing probabilities of different length walks. Both schemes, however, lack an a priori relationship to the seed set objective. In this work we develop a principled framework for evaluating ranking methods by studying seed set expansion applied to the stochastic block model. We derive the optimal gradient for separating the landing probabilities of two classes in a stochastic block model, and find, surprisingly, that under reasonable assumptions the gradient is asymptotically equivalent to personalized PageRank for a specific choice of the PageRank parameter $alpha$ that depends on the block model parameters. This connection provides a novel formal motivation for the success of personalized PageRank in seed set expansion and node ranking generally. We use this connection to propose more advanced techniques incorporating higher moments of landing probabilities; our advanced methods exhibit greatly improved performance despite being simple linear classification rules, and are even competitive with belief propagation.