Do you want to publish a course? Click here

Does slow and steady win the race? Investigating feedback processes in giant molecular clouds

206   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the effects of gradual heating on the evolution of turbulent molecular clouds of mass $2times 10^6$ M$_odot$ and virial parameters ranging between $0.7-1.2$. This gradual heating represents the energy output from processes such as winds from massive stars or feedback from High Mass X-ray binaries (HMXBs), contrasting the impulsive energy injection from supernovae (SNe). For stars with a mass high enough that their lifetime is shorter than the life of the cloud, we include a SN feedback prescription. Including both effects, we investigate the interplay between slow and fast forms of feedback and their effectiveness at triggering/suppressing star formation. We find that SN feedback can carve low density chimneys in the gas, offering a path of least resistance for the energy to escape. Once this occurs the more stable, but less energetic, gradual feedback is able to keep the chimneys open. By funneling the hot destructive gas away from the centre of the cloud, chimneys can have a positive effect on both the efficiency and duration of star formation. Moreover, the critical factor is the number of high mass stars and SNe (and any subsequent HMXBs) active within the free-fall time of each cloud. This can vary from cloud to cloud due to the stochasticity of SN delay times and in HMXB formation. However, the defining factor in our simulations is the efficiency of the cooling, which can alter the Jeans mass required for sink particle formation, along with the number of massive stars in the cloud.



rate research

Read More

Distributed Stochastic Gradient Descent (SGD) when run in a synchronous manner, suffers from delays in runtime as it waits for the slowest workers (stragglers). Asynchronous methods can alleviate stragglers, but cause gradient staleness that can adversely affect the convergence error. In this work, we present a novel theoretical characterization of the speedup offered by asynchronous methods by analyzing the trade-off between the error in the trained model and the actual training runtime(wallclock time). The main novelty in our work is that our runtime analysis considers random straggling delays, which helps us design and compare distributed SGD algorithms that strike a balance between straggling and staleness. We also provide a new error convergence analysis of asynchronous SGD variants without bounded or exponential delay assumptions. Finally, based on our theoretical characterization of the error-runtime trade-off, we propose a method of gradually varying synchronicity in distributed SGD and demonstrate its performance on CIFAR10 dataset.
Giant Molecular Clouds (GMCs) are observed to be turbulent, but theory shows that without a driving mechanism turbulence should quickly decay. The question arises by which mechanisms turbulence is driven or sustained. It has been shown that photoionising feedback from massive stars has an impact on the surrounding GMC and can for example create vast HII bubbles. We therefore address the question of whether turbulence is a consequence of this effect of feedback on the cloud. To investigate this, we analyse the velocity field of simulations of high mass star forming regions by studying velocity structure functions and power spectra. We find that clouds whose morphology is strongly affected by photoionising feedback also show evidence of driving of turbulence by preserving or recovering a Kolmogorov-type velocity field. On the contrary, control run simulations without photoionising feedback have a velocity distribution that bears the signature of gravitational collapse and of the dissipation of energy, where the initial Kolmogorov-type structure function is erased.
Feedback from supernovae is often invoked as an important process in limiting star formation, removing gas from galaxies and hence as a determining process in galaxy formation. Here we report on numerical simulations investigating the interaction between supernova explosions and the natal molecular cloud. We also consider the cases with and without previous feedback from the high-mass star in the form of ionising radiation and stellar winds. The supernova is able to find weak points in the cloud and create channels through which it can escape, leaving much of the well shielded cloud largely unaffected. This effect is increased when the channels are pre-existing due to the effects of previous stellar feedback. The expanding supernova deposits its energy in the gas that is in these exposed channels, and hence sweeps up less mass when feedback has already occurred, resulting in faster outflows with less radiative losses. The full impact of the supernova explosion is then able to impact the larger scale of the galaxy in which it abides. We conclude that supernova explosions only have moderate effects on their dense natal environments but that with pre-existing feedback, the energetic effects of the supernova are able to escape and affect the wider scale medium of the galaxy.
We present simulations of a 500 pc$^2$ region, containing gas of mass 4 $times$ 10$^6$ M$_odot$, extracted from an entire spiral galaxy simulation, scaled up in resolution, including photoionising feedback from stars of mass > 18 M$_odot$. Our region is evolved for 10 Myr and shows clustered star formation along the arm generating $approx$ 5000 cluster sink particles $approx$ 5% of which contain at least one of the $approx$ 4000 stars of mass > 18 M$_odot$. Photoionisation has a noticeable effect on the gas in the region, producing ionised cavities and leading to dense features at the edge of the HII regions. Compared to the no-feedback case, photoionisation produces a larger total mass of clouds and clumps, with around twice as many such objects, which are individually smaller and more broken up. After this we see a rapid decrease in the total mass in clouds and the number of clouds. Unlike studies of isolated clouds, our simulations follow the long range effects of ionisation, with some already-dense gas becoming compressed from multiple sides by neighbouring HII regions. This causes star formation that is both accelerated and partially displaced throughout the spiral arm with up to 30% of our cluster sink particle mass forming at distances > 5 pc from sites of sink formation in the absence of feedback. At later times, the star formation rate decreases to below that of the no-feedback case.
We present a high spatial resolution ($approx 20$ pc) of $^{12}$CO($2-1$) observations of the lenticular galaxy NGC4526. We identify 103 resolved Giant Molecular Clouds (GMCs) and measure their properties: size $R$, velocity dispersion $sigma_v$, and luminosity $L$. This is the first GMC catalog of an early-type galaxy. We find that the GMC population in NGC4526 is gravitationally bound, with a virial parameter $alpha sim 1$. The mass distribution, $dN/dM propto M^{-2.39 pm 0.03}$, is steeper than that for GMCs in the inner Milky Way, but comparable to that found in some late-type galaxies. We find no size-linewidth correlation for the NGC4526 clouds, in contradiction to the expectation from Larsons relation. In general, the GMCs in NGC4526 are more luminous, denser, and have a higher velocity dispersion than equal size GMCs in the Milky Way and other galaxies in the Local Group. These may be due to higher interstellar radiation field than in the Milky Way disk and weaker external pressure than in the Galactic center. In addition, a kinematic measurement of cloud rotation shows that the rotation is driven by the galactic shear. For the vast majority of the clouds, the rotational energy is less than the turbulent and gravitational energy, while the four innermost clouds are unbound and will likely be torn apart by the strong shear at the galactic center. We combine our data with the archival data of other galaxies to show that the surface density $Sigma$ of GMCs is not approximately constant as previously believed, but varies by $sim 3$ orders of magnitude. We also show that the size and velocity dispersion of GMC population across galaxies are related to the surface density, as expected from the gravitational and pressure equilibrium, i.e. $sigma_v R^{-1/2} propto Sigma^{1/2}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا