Do you want to publish a course? Click here

Deterministic Hypothesis Generation for Robust Fitting of Multiple Structures

104   0   0.0 ( 0 )
 Added by Kwang Hee Lee
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We present a novel algorithm for generating robust and consistent hypotheses for multiple-structure model fitting. Most of the existing methods utilize random sampling which produce varying results especially when outlier ratio is high. For a structure where a model is fitted, the inliers of other structures are regarded as outliers when multiple structures are present. Global optimization has recently been investigated to provide stable and unique solutions, but the computational cost of the algorithms is prohibitively high for most image data with reasonable sizes. The algorithm presented in this paper uses a maximum feasible subsystem (MaxFS) algorithm to generate consistent initial hypotheses only from partial datasets in spatially overlapping local image regions. Our assumption is that each genuine structure will exist as a dominant structure in at least one of the local regions. To refine initial hypotheses estimated from partial datasets and to remove residual tolerance dependency of the MaxFS algorithm, iterative re-weighted L1 (IRL1) minimization is performed for all the image data. Initial weights of IRL1 framework are determined from the initial hypotheses generated in local regions. Our approach is significantly more efficient than those that use only global optimization for all the image data. Experimental results demonstrate that the presented method can generate more reliable and consistent hypotheses than random-sampling methods for estimating single and multiple structures from data with a large amount of outliers. We clearly expose the influence of algorithm parameter settings on the results in our experiments.

rate research

Read More

We present an efficient deterministic hypothesis generation algorithm for robust fitting of multiple structures based on the maximum feasible subsystem (MaxFS) framework. Despite its advantage, a global optimization method such as MaxFS has two main limitations for geometric model fitting. First, its performance is much influenced by the user-specified inlier scale. Second, it is computationally inefficient for large data. The presented MaxFS-based algorithm iteratively estimates model parameters and inlier scale and also overcomes the second limitation by reducing data for the MaxFS problem. Further it generates hypotheses only with top-n ranked subsets based on matching scores and data fitting residuals. This reduction of data for the MaxFS problem makes the algorithm computationally realistic. Our method, called iterative MaxFS with inlier scale estimation and subset updating (IMaxFS-ISE-SU) in this paper, performs hypothesis generation and fitting alternately until all of true structures are found. The IMaxFS-ISE-SU algorithm generates substantially more reliable hypotheses than random sampling-based methods especially as (pseudo-)outlier ratios increase. Experimental results demonstrate that our method can generate more reliable and consistent hypotheses than random sampling-based methods for estimating multiple structures from data with many outliers.
In this paper, we propose a novel hierarchical representation via message propagation (HRMP) method for robust model fitting, which simultaneously takes advantages of both the consensus analysis and the preference analysis to estimate the parameters of multiple model instances from data corrupted by outliers, for robust model fitting. Instead of analyzing the information of each data point or each model hypothesis independently, we formulate the consensus information and the preference information as a hierarchical representation to alleviate the sensitivity to gross outliers. Specifically, we firstly construct a hierarchical representation, which consists of a model hypothesis layer and a data point layer. The model hypothesis layer is used to remove insignificant model hypotheses and the data point layer is used to remove gross outliers. Then, based on the hierarchical representation, we propose an effective hierarchical message propagation (HMP) algorithm and an improved affinity propagation (IAP) algorithm to prune insignificant vertices and cluster the remaining data points, respectively. The proposed HRMP can not only accurately estimate the number and parameters of multiple model instances, but also handle multi-structural data contaminated with a large number of outliers. Experimental results on both synthetic data and real images show that the proposed HRMP significantly outperforms several state-of-the-art model fitting methods in terms of fitting accuracy and speed.
The standard technique for sub-pixel estimation of atom positions from atomic resolution scanning transmission electron microscopy images relies on fitting intensity maxima or minima with a two-dimensional Gaussian function. While this is a widespread method of measurement, it can be error prone in images with non-zero aberrations, strong intensity differences between adjacent atoms or in situations where the neighboring atom positions approach the resolution limit of the microscope. Here we demonstrate mpfit, an atom finding algorithm that iteratively calculates a series of overlapping two-dimensional Gaussian functions to fit the experimental dataset and then subsequently uses a subset of the calculated Gaussian functions to perform sub-pixel refinement of atom positions. Based on both simulated and experimental datasets presented in this work, this approach gives lower errors when compared to the commonly used single Gaussian peak fitting approach and demonstrates increased robustness over a wider range of experimental conditions.
Scene graph generation models understand the scene through object and predicate recognition, but are prone to mistakes due to the challenges of perception in the wild. Perception errors often lead to nonsensical compositions in the output scene graph, which do not follow real-world rules and patterns, and can be corrected using commonsense knowledge. We propose the first method to acquire visual commonsense such as affordance and intuitive physics automatically from data, and use that to improve the robustness of scene understanding. To this end, we extend Transformer models to incorporate the structure of scene graphs, and train our Global-Local Attention Transformer on a scene graph corpus. Once trained, our model can be applied on any scene graph generation model and correct its obvious mistakes, resulting in more semantically plausible scene graphs. Through extensive experiments, we show our model learns commonsense better than any alternative, and improves the accuracy of state-of-the-art scene graph generation methods.
This paper considers the data association problem for multi-target tracking. Multiple hypothesis tracking is a popular algorithm for solving this problem but it is NP-hard and is is quite complicated for a large number of targets or for tracking maneuvering targets. To improve tracking performance and enhance robustness, we propose a randomized multiple model multiple hypothesis tracking method, which has three distinctive advantages. First, it yields a randomized data association solution which maximizes the expectation of the logarithm of the posterior probability and can be solved efficiently by linear programming. Next, the state estimation performance is improved by the random coefficient matrices Kalman filter, which mitigates the difficulty introduced by randomized data association, i.e., where the coefficient matrices of the dynamic system are random. Third, the probability that the target follows a specific dynamic model is derived by jointly optimizing the multiple possible models and data association hypotheses, and it does not require prior mode transition probabilities. Thus, it is more robust for tracking multiple maneuvering targets. Simulations demonstrate the efficiency and superior results of the proposed algorithm over interacting multiple model multiple hypothesis tracking.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا