Do you want to publish a course? Click here

Universal features of the Abelian Polyakov loop in 1+1 dimension

385   0   0.0 ( 0 )
 Added by Judah Unmuth-Yockey
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We show that the Polyakov loop of the two-dimensional lattice Abelian Higgs model can be calculated using the tensor renormalization group approach. We check the accuracy of the results using standard Monte Carlo simulations. We show that the energy gap produced by the insertion of the Polyakov loop obeys universal finite-size scaling which persists in the time continuum limit. We briefly discuss the relevance of these results for quantum simulations.



rate research

Read More

Lattice gauge theories are fundamental to our understanding of high-energy physics. Nevertheless, the search for suitable platforms for their quantum simulation has proven difficult. We show that the Abelian Higgs model in 1+1 dimensions is a prime candidate for an experimental quantum simulation of a lattice gauge theory. To this end, we use a discrete tensor reformulation to smoothly connect the space-time isotropic version used in most numerical lattice simulations to the continuous-time limit corresponding to the Hamiltonian formulation. The eigenstates of the Hamiltonian are neutral for periodic boundary conditions, but we probe the nonzero charge sectors by either introducing a Polyakov loop or an external electric field. In both cases we obtain universal functions relating the mass gap, the gauge coupling, and the spatial size which are invariant under the deformation of the temporal lattice spacing. We propose to use a physical multi-leg ladder of atoms trapped in optical lattices and interacting with Rydberg-dressed interactions to quantum simulate the model and check the universal features. Our results provide a path to the analog quantum simulation of lattice gauge theories with atoms in optical lattices.
We apply the liquid droplet model to describe the clustering phenomenon in SU(2) gluodynamics, especially, in the vicinity of the deconfinement phase transition. In particular, we analyze the size distributions of clusters formed by the Polyakov loops of the same sign. Within such an approach this phase transition can be considered as the transition between two types of liquids where one of the liquids (the largest droplet of a certain Polyakov loop sign) experiences a condensation, while the other one (the next to largest droplet of opposite Polyakov loop sign) evaporates. The clusters of smaller sizes form two accompanying gases, and their size distributions are described by the liquid droplet parameterization. By fitting the lattice data we have extracted the value of Fisher exponent $tau =$ 1.806 $pm$ 0.008. Also we found that the temperature dependences of the surface tension of both gaseous clusters are entirely different below and above the phase transition and, hence, they can serve as an order parameter. The critical exponents of the surface tension coefficient in the vicinity of the phase transition are found. Our analysis shows that the temperature dependence of the surface tension coefficient above the critical temperature has a $T^2$ behavior in one gas of clusters and $T^4$ in the other one.
We investigate the Polyakov loop effects on the QCD phase diagram by using the strong-coupling (1/g^2) expansion of the lattice QCD (SC-LQCD) with one species of unrooted staggered quark, including O}(1/g^4) effects. We take account of the effects of Polyakov loop fluctuations in Weiss mean-field approximation (MFA), and compare the results with those in the Haar-measure MFA (no fluctuation from the mean-field). The Polyakov loops strongly suppress the chiral transition temperature in the second-order/crossover region at small chemical potential, while they give a minor modification of the first-order phase boundary at larger chemical potential. The Polyakov loops also account for a drastic increase of the interaction measure near the chiral phase transition. The chiral and Polyakov loop susceptibilities have their peaks close to each other in the second-order/crossover region. In particular in Weiss MFA, there is no indication of the separated deconfinement transition boundary from the chiral phase boundary at any chemical potential. We discuss the interplay between the chiral and deconfinement dynamics via the bare quark mass dependence of susceptibilities.
282 - Y. Maezawa , S. Aoki , S. Ejiri 2008
Screening properties of the quark gluon plasma are studied from Polyakov-loop correlation in lattice QCD simulations with two flavors of improved Wilson quarks at temperatures $T/Tpc simeq 1$--4 where $Tpc$ is the pseudocritical temperature. Using the Euclidean-time reflection symmetry and the charge conjugation symmetry, we introduce various types of Polyakov-loop correlation functions and extract screening masses in magnetic and electric sectors. We find that the temperature dependence of the screening masses are well described by the weak coupling expansion. We also find that a ratio of the screening masses in the electric sector to the magnetic sector shows qualitative agreement with a prediction from the dimensionally-reduced effective field theory and the N=4 supersymmetric Yang-Mills theory at $1.3 < T/Tpc < 3$.
Three-quark potentials are studied in great details in the three-dimensional $SU(3)$ pure gauge theory at finite temperature, for the cases of static sources in the fundamental and adjoint representations. For this purpose, the corresponding Polyakov loop model in its simplest version is adopted. The potentials in question, as well as the conventional quark--anti-quark potentials, are calculated numerically both in the confinement and deconfinement phases. Results are compared to available analytical predictions at strong coupling and in the limit of large number of colors $N$. The three-quark potential is tested against the expected $Delta$ and $Y$ laws and the $3q$ string tension entering these laws is compared to the conventional $qbar{q}$ string tension. As a byproduct of this investigation, essential features of the critical behaviour across the deconfinement transition are elucidated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا