Understanding the relaxation process is the most important unsolved problem in non-equilibrium quantum physics. Current understanding primarily concerns on if and how an isolated quantum many-body system thermalize. However, there is no clear understanding of what conditions and on which time-scale do thermalization occurs. In this article, we simulate the quench dynamics of one-dimensional Bose gas in an optical lattice from an{it {ab initio}} perspective by solving the time-dependent many-boson Schrodinger equation using the multi-configurational time-dependent Hartree method for bosons (MCTDHB). We direct a superfluid (SF) to Mott-insulator (MI) transition by performing two independent quenches: an interaction quench when the interaction strength is changed instantaneously, and a lattice depth quench where the depth of the lattice is altered suddenly. We show that although the Bose-Hubbard model predicts identical physics, the general many-body treatment shows significant differences between the two cases. We observe that lattice depth quench exhibits a large time-scale to reach the MI state and shows an oscillatory phase collapse-revival dynamics and a complete absence of thermalization that reveals through the analysis of the time-evolution of the reduced one-body density matrix, two-body density, and entropy production. In contrast, the interaction quench shows a swift transition to the MI state and shows a clear signature of thermalization for strong quench values. We provide a physical explanation for these differences and prescribe an analytical fitting formula for the time required for thermalization.