Do you want to publish a course? Click here

StereoNet: Guided Hierarchical Refinement for Real-Time Edge-Aware Depth Prediction

99   0   0.0 ( 0 )
 Added by Sameh Khamis
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

This paper presents StereoNet, the first end-to-end deep architecture for real-time stereo matching that runs at 60 fps on an NVidia Titan X, producing high-quality, edge-preserved, quantization-free disparity maps. A key insight of this paper is that the network achieves a sub-pixel matching precision than is a magnitude higher than those of traditional stereo matching approaches. This allows us to achieve real-time performance by using a very low resolution cost volume that encodes all the information needed to achieve high disparity precision. Spatial precision is achieved by employing a learned edge-aware upsampling function. Our model uses a Siamese network to extract features from the left and right image. A first estimate of the disparity is computed in a very low resolution cost volume, then hierarchically the model re-introduces high-frequency details through a learned upsampling function that uses compact pixel-to-pixel refinement networks. Leveraging color input as a guide, this function is capable of producing high-quality edge-aware output. We achieve compelling results on multiple benchmarks, showing how the proposed method offers extreme flexibility at an acceptable computational budget.



rate research

Read More

This paper presents HITNet, a novel neural network architecture for real-time stereo matching. Contrary to many recent neural network approaches that operate on a full cost volume and rely on 3D convolutions, our approach does not explicitly build a volume and instead relies on a fast multi-resolution initialization step, differentiable 2D geometric propagation and warping mechanisms to infer disparity hypotheses. To achieve a high level of accuracy, our network not only geometrically reasons about disparities but also infers slanted plane hypotheses allowing to more accurately perform geometric warping and upsampling operations. Our architecture is inherently multi-resolution allowing the propagation of information across different levels. Multiple experiments prove the effectiveness of the proposed approach at a fraction of the computation required by state-of-the-art methods. At the time of writing, HITNet ranks 1st-3rd on all the metrics published on the ETH3D website for two view stereo, ranks 1st on most of the metrics among all the end-to-end learning approaches on Middlebury-v3, ranks 1st on the popular KITTI 2012 and 2015 benchmarks among the published methods faster than 100ms.
84 - Yi Guo , Ji Liu 2020
Guided sparse depth upsampling aims to upsample an irregularly sampled sparse depth map when an aligned high-resolution color image is given as guidance. Many neural networks have been designed for this task. However, they often ignore the structural difference between the depth and the color image, resulting in obvious artifacts such as texture copy and depth blur at the upsampling depth. Inspired by the normalized convolution operation, we propose a guided convolutional layer to recover dense depth from sparse and irregular depth image with an depth edge image as guidance. Our novel guided network can prevent the depth value from crossing the depth edge to facilitate upsampling. We further design a convolution network based on proposed convolutional layer to combine the advantages of different algorithms and achieve better performance. We conduct comprehensive experiments to verify our method on real-world indoor and synthetic outdoor datasets. Our method produces strong results. It outperforms state-of-the-art methods on the Virtual KITTI dataset and the Middlebury dataset. It also presents strong generalization capability under different 3D point densities, various lighting and weather conditions.
In this paper, we propose a geometric neural network with edge-aware refinement (GeoNet++) to jointly predict both depth and surface normal maps from a single image. Building on top of two-stream CNNs, GeoNet++ captures the geometric relationships between depth and surface normals with the proposed depth-to-normal and normal-to-depth modules. In particular, the depth-to-normal module exploits the least square solution of estimating surface normals from depth to improve their quality, while the normal-to-depth module refines the depth map based on the constraints on surface normals through kernel regression. Boundary information is exploited via an edge-aware refinement module. GeoNet++ effectively predicts depth and surface normals with strong 3D consistency and sharp boundaries resulting in better reconstructed 3D scenes. Note that GeoNet++ is generic and can be used in other depth/normal prediction frameworks to improve the quality of 3D reconstruction and pixel-wise accuracy of depth and surface normals. Furthermore, we propose a new 3D geometric metric (3DGM) for evaluating depth prediction in 3D. In contrast to current metrics that focus on evaluating pixel-wise error/accuracy, 3DGM measures whether the predicted depth can reconstruct high-quality 3D surface normals. This is a more natural metric for many 3D application domains. Our experiments on NYUD-V2 and KITTI datasets verify that GeoNet++ produces fine boundary details, and the predicted depth can be used to reconstruct high-quality 3D surfaces. Code has been made publicly available.
Depth completion aims at inferring a dense depth image from sparse depth measurement since glossy, transparent or distant surface cannot be scanned properly by the sensor. Most of existing methods directly interpolate the missing depth measurements based on pixel-wise image content and the corresponding neighboring depth values. Consequently, this leads to blurred boundaries or inaccurate structure of object. To address these problems, we propose a novel self-guided instance-aware network (SG-IANet) that: (1) utilize self-guided mechanism to extract instance-level features that is needed for depth restoration, (2) exploit the geometric and context information into network learning to conform to the underlying constraints for edge clarity and structure consistency, (3) regularize the depth estimation and mitigate the impact of noise by instance-aware learning, and (4) train with synthetic data only by domain randomization to bridge the reality gap. Extensive experiments on synthetic and real world dataset demonstrate that our proposed method outperforms previous works. Further ablation studies give more insights into the proposed method and demonstrate the generalization capability of our model.
Designing a lightweight semantic segmentation network often requires researchers to find a trade-off between performance and speed, which is always empirical due to the limited interpretability of neural networks. In order to release researchers from these tedious mechanical trials, we propose a Graph-guided Architecture Search (GAS) pipeline to automatically search real-time semantic segmentation networks. Unlike previous works that use a simplified search space and stack a repeatable cell to form a network, we introduce a novel search mechanism with new search space where a lightweight model can be effectively explored through the cell-level diversity and latencyoriented constraint. Specifically, to produce the cell-level diversity, the cell-sharing constraint is eliminated through the cell-independent manner. Then a graph convolution network (GCN) is seamlessly integrated as a communication mechanism between cells. Finally, a latency-oriented constraint is endowed into the search process to balance the speed and performance. Extensive experiments on Cityscapes and CamVid datasets demonstrate that GAS achieves the new state-of-the-art trade-off between accuracy and speed. In particular, on Cityscapes dataset, GAS achieves the new best performance of 73.5% mIoU with speed of 108.4 FPS on Titan Xp.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا