Do you want to publish a course? Click here

How Post-Newtonian Dynamics Shape the Distribution of Stationary Binary Black Hole LISA Sources in nearby Globular Clusters

200   0   0.0 ( 0 )
 Added by Johan Samsing Mr.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We derive the observable gravitational wave (GW) peak frequency ($f$) distribution of binary black holes (BBHs) that currently reside inside their globular clusters (GCs), with and without 2.5 Post-Newtonian (2.5PN) effects included in the dynamical evolution of the BBHs. Recent Newtonian studies have reported that a notable number of nearby non-merging BBHs, i.e. those BBHs that are expected to undergo further dynamical interactions before merger, in GCs are likely to be observable by LISA. However, our 2.5PN calculations show that the distribution of $log f$ for the non-merging BBH population above $sim 10^{-3.5}$ Hz scales as $f^{-34/9}$ instead of the $f^{-2/3}$ scaling found in the Newtonian case. This leads to an approximately two-orders-of-magnitude reduction in the expected number of GW sources at $sim 10^{-3}$ Hz, which lead us to conclude that observing nearby BBHs with LISA is not as likely as has been claimed in the recent literature. In fact, our results suggest that it might be more likely that LISA detects the population of BBHs that will merge before undergoing further interactions. This interestingly suggests that the BBH merger rate derived from LIGO can be used to forecast the number of nearby LISA sources, as well as providing insight into the fraction of BBH mergers forming in GCs.



rate research

Read More

We study the gravitational wave (GW) frequency and chirp mass distribution of binary black hole (BBH) mergers assembled through three-body interactions in globular clusters (GCs), when GW emission at the 2.5 post-Newtonian (PN) level is included in the $N$-body equation-of-motion (EOM). From performing $sim 2.5times10^{6}$ PN binary-single interactions based on GC data from the `MOCCA-Survey Database I project, and by the use of analytical methods, we find that $5-10%$ of all the three-body assembled GC BBH mergers have a GW frequency at formation that is $gtrsim 10^{-1}$ Hz, implying they enter the LIGO band without having drifted through the LISA band first. If PN terms are not included in the EOM, one finds instead that all BBH mergers drifts through both LISA and LIGO. As the fraction of BBH mergers that only show up in LIGO is expected to be $sim 0%$ for standard field binary BBH mergers, future joint measurements with LISA and LIGO can be used to gain insight into the formation of BBH mergers.
We show that nearly half of all binary black hole (BBH) mergers dynamically assembled in globular clusters have measurable eccentricities ($e>0.01$) in the LISA band ($10^{-2}$ Hz), when General Relativistic corrections are properly included in the $N$-body evolution. If only Newtonian gravity is included, the derived fraction of eccentric LISA sources is significantly lower, which explains why recent studies all have greatly underestimated this fraction. Our findings have major implications for how to observationally distinguish between BBH formation channels using eccentricity with LISA, which is one of the key science goals of the mission. We illustrate that the relatively large population of eccentric LISA sources reported here originates from BBHs that merge between hardening binary-single interactions inside their globular cluster. These results indicate a bright future for using LISA to probe the origin of BBH mergers.
We explore the formation of double-compact-object binaries in Milky Way (MW) globular clusters (GCs) that may be detectable by the Laser Interferometer Space Antenna (LISA). We use a set of 137 fully evolved GC models that, overall, effectively match the properties of the observed GCs in the MW. We estimate that, in total, the MW GCs contain $sim21$ sources that will be detectable by LISA. These detectable sources contain all combinations of black hole (BH), neutron star, and white dwarf components. We predict $sim7$ of these sources will be BH-BH binaries. Furthermore, we show that some of these BH-BH binaries can have signal-to-noise ratios large enough to be detectable at the distance of the Andromeda galaxy or even the Virgo cluster.
Numerical simulations have shown that black holes (BHs) can strongly influence the evolution and present-day observational properties of globular clusters (GCs). Using a Monte Carlo code, we construct GC models that match the Milky Way (MW) cluster NGC 3201, the first cluster in which a stellar-mass BH was identified through radial-velocity measurements. We predict that NGC 3201 contains $gtrsim 200$ stellar-mass BHs. Furthermore, we explore the dynamical formation of main sequence-BH binaries and demonstrate that systems similar to the observed BH binary in NGC 3201 are produced naturally. Additionally, our models predict the existence of bright blue-straggler-BH binaries unique to core-collapsed clusters, which otherwise retain few BHs.
Using state-of-the-art dynamical simulations of globular clusters, including radiation reaction during black hole encounters and a cosmological model of star cluster formation, we create a realistic population of dynamically-formed binary black hole mergers across cosmic space and time. We show that in the local universe, 10% of these binaries form as the result of gravitational-wave emission between unbound black holes during chaotic resonant encounters, with roughly half of those events having eccentricities detectable by current ground-based gravitational-wave detectors. The mergers that occur inside clusters typically have lower masses than binaries that were ejected from the cluster many Gyrs ago. Gravitational-wave captures from globular clusters contribute 1-2 Gpc^-3 yr^-1 to the binary merger rate in the local universe, increasing to ~10 Gpc^-3 yr^-1 at z~3. Finally, we discuss some of the technical difficulties associated with post-Newtonian scattering encounters, and how care must be taken when measuring the binary parameters during a dynamical capture.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا