Do you want to publish a course? Click here

Probing the Weizsacker-Williams gluon Wigner distribution in pp collisions

66   0   0.0 ( 0 )
 Added by Renaud Boussarie
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We show that the diffractive forward production of two quarkonia, especially the $chi_{cJ}$ and $eta_c$ states, in proton-proton or proton-ion collisions can access the Weizsacker-Williams gluon Wigner distribution of the proton. We use the hybrid factorization approach where the collinear, double gluon PDF is applied for one of the protons and the $k_T$-dependent (Wigner or GTMD) distribution for the other. The production of quarkonia is treated in the NRQCD framework. A particularly concise formula is obtained for double $chi_{J=1}$ production.



rate research

Read More

We analyze the inclusive spectra of hadrons produced in $pp$ collisions at high energies in the mid-rapidity region within the soft QCD and perturbative QCD assuming the possible creation of the soft gluons at low intrinsic transverse momenta $k_t$. From the best description of the LHC data we found the parametrization of the unintegrated gluon distribution which at low $k_t$ is different from the one obtained within the perturbative QCD.
The conventional and linearly polarized Weizsacker-Williams gluon distributions at small x are defined from the two-point function of the gluon field in light-cone gauge. They appear in the cross section for dijet production in deep inelastic scattering at high energy. We determine these functions in the small-x limit from solutions of the JIMWLK evolution equations and show that they exhibit approximate geometric scaling. Also, we discuss the functional distributions of these WW gluon distributions over the JIMWLK ensemble at rapidity $Ysim 1/alpha_s$. These are determined by a 2d Liouville action for the logarithm of the covariant gauge function $g^2 mathrm{tr},A^+(q)A^+(-q)$. For transverse momenta on the order of the saturation scale we observe large variations across configurations (evolution trajectories) of the linearly polarized distribution up to several times its average, and even to negative values.
The nuclear modification factor $R_{pA}(p_T)$ provides information on the small-$x$ gluon distribution of a nucleus at hadron colliders. Several experiments have recently measured the nuclear modification factor not only in minimum bias but also for central $pA$ collisions. In this paper we analyze the bias on the configurations of soft gluon fields introduced by a centrality selection via the number of hard particles. Such bias can be viewed as reweighting of configurations of small-$x$ gluons. We find that the biased nuclear modification factor ${cal Q}_{pA}(p_T)$ for central collisions is above $R_{pA}(p_T)$ for minimum bias events, and that it may redevelop a Cronin peak even at small $x$. The magnitude of the peak is predicted to increase approximately like $1/{A_{perp}}^ u$, $ usim0.6pm0.1$, if one is able to select more compact configurations of the projectile proton where its gluons occupy a smaller transverse area $A_perp$. We predict an enhanced ${cal Q}_{pp}(p_T)-1 sim 1/(p_T^2)^ u$ and a Cronin peak even for central $pp$ collisions.
244 - U. DAlesio , C. Flore , F. Murgia 2019
Within the so-called color gauge invariant generalized parton model, a TMD scheme including initial- (ISI) and final-state (FSI) interactions, we present a phenomenological analysis of available SSA data for pion and $D$-meson production in $pp$ collisions. This allows us, for the first time, to put a preliminary constraint on the two universal types of gluon Sivers function entering the model. Predictions for SSAs in $J/psi$ and direct photon production, as well as a comparison with the simpler generalized parton model (without ISIs and FSIs), are also presented.
Using momentum sum rule for evolution equations for Double Parton Distribution Functions (DPDFs) in the leading logarithmic approximation, we find that the double gluon distribution function can be uniquely constrained via the single gluon distribution function. We also study numerically its evolution with a hard scale and show that an approximately factorized ansatz into the product of two single gluon distributions performs quite well at small values of $x$ but is always violated for larger values, as expected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا