The Full Event Interpretation is presented: a new exclusive tagging algorithm used by the high-energy physics experiment Belle II. The experimental setup of Belle II allows the precise measurement of otherwise inaccessible $B$ meson decay-modes. The Full Event Interpretation algorithm enables many of these measurements. The algorithm relies on machine learning to automatically identify plausible $B$ meson decay chains based on the data recorded by the detector. Compared to similar algorithms employed by previous experiments, the Full Event Interpretation provides a greater efficiency, yielding a larger effective sample size usable in the measurement.
We present the results of the re-discovery of the decay $B^0 to pi^- ell^+ u_ell$ in 34.6 fb$^{-1}$ of Belle II data using hadronic $B$-tagging via the Full Event Interpretation algorithm. We observe 21 signal events on a background of 155 in a fit to the distribution of the square of the missing mass, $M_{mathrm{miss}}^2$, with a significance of 5.69$sigma$, and determine a total branching fraction of (1.58 $pm$ 0.43$_{mathrm{stat}}$ $pm$ 0.07$_{mathrm{sys}}$) $times 10^{-4}$.
We report the results of a study of the exclusive semileptonic decays B->pi0lnu, B->pi+lnu, B->rho0lnu, B->rho+lnu and B->omegalnu, where l represents an electron or a muon. The events are tagged by fully reconstructing a second B meson in the event in a hadronic decay mode. The measured branching fractions are Br(B->pi0lnu) = (0.80 +- 0.08 +- 0.04)x10^-4, Br(B->pi+lnu) = (1.49 +- 0.09 +- 0.07)x10^-4, Br(B->rho0lnu) = (1.83 +- 0.10 +- 0.10)x10^-4, Br(B->rho+lnu) = (3.22 +- 0.27 +- 0.24)x10^-4, and Br(B->omegalnu) =(1.07 +- 0.16 +- 0.07)x10^-4, where the first error is statistical and the second one is systematic. The obtained branching fractions are inclusive of soft photon emission. We also determine the branching fractions as a function of the 4-momentum transfer squared to the leptonic system q^2=(p_l+p_nu)^2, where p_l and p_nu are the lepton and neutrino 4-momenta, respectively. Using the pion modes, a recent LCSR calculation, lattice QCD results and a model-independent description of the hadronic form factor, a value of the CKM matrix element |V_{ub}| = (3.52 +- 0.29)x10^-3 is extracted. For the first time, a charmless state with invariant mass greater than 1 GeV/c^2, which might be dominated by the decay B->f2lnu, is observed. These results are obtained from a 711 1/fb data sample that contains 772 millions BB pairs, collected near the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e^+ e^- collider.
This contribution illustrates a new search for the flavor-changing neutral-current decay ${B^+ to K^+ u bar u}$ performed by the Belle II experiment at the SuperKEKB asymmetric-energy electron-positron collider. In this study, a sample corresponding to an integrated luminosity of $63, rm{fb}^{-1}$ collected at the $rm Upsilon(4S)$ resonance and an additional sample of $9, rm{fb}^{-1}$ collected at an energy $60, rm MeV$ below the resonance are used. A novel technique, based on an inclusive tagging method and exploiting the topological features of the ${B^+ to K^+ u bar u}$ decay, is employed and it provides a higher signal efficiency with respect to the methods used in the previous searches. No significant signal is observed. An upper limit of $4.1 times 10^{-5}$ is set on the ${B^+ to K^+ u bar u}$ branching fraction at the $90, %$ confidence level.
We present a software framework for Belle II that reconstructs B mesons in many decay modes with minimal user intervention. It does so by reconstructing particles in user-supplied decay channels, and then in turn using these reconstructed particles in higher-level decays. This hierarchical reconstruction allows one to cover a relatively high fraction of all B decays by specifying a limited number of particle decays. Multivariate classification methods are used to achieve a high signal-to-background ratio in each individual channel. The entire reconstruction, including the application of pre-cuts and classifier trainings, is automated to a high degree and will allow users to retrain to account for analysis-specific signal-side selections.
The new Belle II experiment at the asymmetric $e^+ e^-$ accelerator SuperKEKB at KEK in Japan is designed to deliver a peak luminosity of $8times10^{35}text{cm}^{-2}text{s}^{-1}$. To perform high-precision track reconstruction, e.g. for measurements of time-dependent CP-violating decays and secondary vertices, the Belle II detector is equipped with a highly segmented pixel detector (PXD). The high instantaneous luminosity and short bunch crossing times result in a large stream of data in the PXD, which needs to be significantly reduced for offline storage. The data reduction is performed using an FPGA-based Data Acquisition Tracking and Concentrator Online Node (DATCON), which uses information from the Belle II silicon strip vertex detector (SVD) surrounding the PXD to carry out online track reconstruction, extrapolation to the PXD, and Region of Interest (ROI) determination on the PXD. The data stream is reduced by a factor of ten with an ROI finding efficiency of >90% for PXD hits inside the ROI down to 50 MeV in $p_text{T}$ of the stable particles. We will present the current status of the implementation of the track reconstruction using Hough transformations, and the results obtained for simulated Upsilon(4S) $rightarrow , Bbar{B}$ events.
Thomas Keck
,Fernandi Abudinen
,Florian U. Bernlochner
.
(2018)
.
"The Full Event Interpretation -- An exclusive tagging algorithm for the Belle II experiment"
.
Florian Bernlochner
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا