Do you want to publish a course? Click here

Tree decompositions of graphs without large bipartite holes

63   0   0.0 ( 0 )
 Added by Hong Liu
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

A recent result of Condon, Kim, K{u}hn and Osthus implies that for any $rgeq (frac{1}{2}+o(1))n$, an $n$-vertex almost $r$-regular graph $G$ has an approximate decomposition into any collections of $n$-vertex bounded degree trees. In this paper, we prove that a similar result holds for an almost $alpha n$-regular graph $G$ with any $alpha>0$ and a collection of bounded degree trees on at most $(1-o(1))n$ vertices if $G$ does not contain large bipartite holes. This result is sharp in the sense that it is necessary to exclude large bipartite holes and we cannot hope for an approximate decomposition into $n$-vertex trees. Moreover, this implies that for any $alpha>0$ and an $n$-vertex almost $alpha n$-regular graph $G$, with high probability, the randomly perturbed graph $Gcup mathbf{G}(n,O(frac{1}{n}))$ has an approximate decomposition into all collections of bounded degree trees of size at most $(1-o(1))n$ simultaneously. This is the first result considering an approximate decomposition problem in the context of Ramsey-Turan theory and the randomly perturbed graph model.



rate research

Read More

A graph $G$ is said to be ubiquitous, if every graph $Gamma$ that contains arbitrarily many disjoint $G$-minors automatically contains infinitely many disjoint $G$-minors. The well-known Ubiquity conjecture of Andreae says that every locally finite graph is ubiquitous. In this paper we show that locally finite graphs admitting a certain type of tree-decomposition, which we call an extensive tree-decomposition, are ubiquitous. In particular this includes all locally finite graphs of finite tree-width, and also all locally finite graphs with finitely many ends, all of which have finite degree. It remains an open question whether every locally finite graph admits an extensive tree-decomposition.
A graph $G$ contains $H$ as an emph{immersion} if there is an injective mapping $phi: V(H)rightarrow V(G)$ such that for each edge $uvin E(H)$, there is a path $P_{uv}$ in $G$ joining vertices $phi(u)$ and $phi(v)$, and all the paths $P_{uv}$, $uvin E(H)$, are pairwise edge-disjoint. An analogue of Hadwigers conjecture for the clique immersions by Lescure and Meyniel states that every graph $G$ contains $K_{chi(G)}$ as an immersion. We consider the average degree condition and prove that for any bipartite graph $H$, every $H$-free graph $G$ with average degree $d$ contains a clique immersion of order $(1-o(1))d$, implying that Lescure and Meyniels conjecture holds asymptotically for graphs without fixed bipartite graph.
246 - Matthew Wales 2021
The Hadwiger number $h(G)$ is the order of the largest complete minor in $G$. Does sufficient Hadwiger number imply a minor with additional properties? In [2], Geelen et al showed $h(G)geq (1+o(1))ctsqrt{ln t}$ implies $G$ has a bipartite subgraph with Hadwiger number at least $t$, for some explicit $csim 1.276dotsc$. We improve this to $h(G) geq (1+o(1))tsqrt{log_2 t}$, and provide a construction showing this is tight. We also derive improved bounds for the topological minor variant of this problem.
This paper is motivated by the following question: what are the unavoidable induced subgraphs of graphs with large treewidth? Aboulker et al. made a conjecture which answers this question in graphs of bounded maximum degree, asserting that for all $k$ and $Delta$, every graph with maximum degree at most $Delta$ and sufficiently large treewidth contains either a subdivision of the $(ktimes k)$-wall or the line graph of a subdivision of the $(ktimes k)$-wall as an induced subgraph. We prove two theorems supporting this conjecture, as follows. 1. For $tgeq 2$, a $t$-theta is a graph consisting of two nonadjacent vertices and three internally disjoint paths between them, each of length at least $t$. A $t$-pyramid is a graph consisting of a vertex $v$, a triangle $B$ disjoint from $v$ and three paths starting at $v$ and disjoint otherwise, each joining $v$ to a vertex of $B$, and each of length at least $t$. We prove that for all $k,t$ and $Delta$, every graph with maximum degree at most $Delta$ and sufficiently large treewidth contains either a $t$-theta, or a $t$-pyramid, or the line graph of a subdivision of the $(ktimes k)$-wall as an induced subgraph. This affirmatively answers a question of Pilipczuk et al. asking whether every graph of bounded maximum degree and sufficiently large treewidth contains either a theta or a triangle as an induced subgraph (where a theta means a $t$-theta for some $tgeq 2$). 2. A subcubic subdivided caterpillar is a tree of maximum degree at most three whose all vertices of degree three lie on a path. We prove that for every $Delta$ and subcubic subdivided caterpillar $T$, every graph with maximum degree at most $Delta$ and sufficiently large treewidth contains either a subdivision of $T$ or the line graph of a subdivision of $T$ as an induced subgraph.
Let $G$ be a graph whose edges are coloured with $k$ colours, and $mathcal H=(H_1,dots , H_k)$ be a $k$-tuple of graphs. A monochromatic $mathcal H$-decomposition of $G$ is a partition of the edge set of $G$ such that each part is either a single edge or forms a monochromatic copy of $H_i$ in colour $i$, for some $1le ile k$. Let $phi_{k}(n,mathcal H)$ be the smallest number $phi$, such that, for every order-$n$ graph and every $k$-edge-colouring, there is a monochromatic $mathcal H$-decomposition with at most $phi$ elements. Extending the previous results of Liu and Sousa [Monochromatic $K_r$-decompositions of graphs, Journal of Graph Theory}, 76:89--100, 2014], we solve this problem when each graph in $mathcal H$ is a clique and $nge n_0(mathcal H)$ is sufficiently large.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا