Do you want to publish a course? Click here

On the rate of convergence of empirical measure in $infty-$Wasserstein distance for unbounded density function

71   0   0.0 ( 0 )
 Added by Yulong Lu
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We consider a sequence of identically independently distributed random samples from an absolutely continuous probability measure in one dimension with unbounded density. We establish a new rate of convergence of the $infty-$Wasserstein distance between the empirical measure of the samples and the true distribution, which extends the previous convergence result by Trilllos and Slepv{c}ev to the case that the true distribution has an unbounded density.



rate research

Read More

Consider the empirical measure, $hat{mathbb{P}}_N$, associated to $N$ i.i.d. samples of a given probability distribution $mathbb{P}$ on the unit interval. For fixed $mathbb{P}$ the Wasserstein distance between $hat{mathbb{P}}_N$ and $mathbb{P}$ is a random variable on the sample space $[0,1]^N$. Our main result is that its normalised quantiles are asymptotically maximised when $mathbb{P}$ is a convex combination between the uniform distribution supported on the two points ${0,1}$ and the uniform distribution on the unit interval $[0,1]$. This allows us to obtain explicit asymptotic confidence regions for the underlying measure $mathbb{P}$. We also suggest extensions to higher dimensions with numerical evidence.
We prove the asymptotic independence of the empirical process $alpha_n = sqrt{n}( F_n - F)$ and the rescaled empirical distribution function $beta_n = n (F_n(tau+frac{cdot}{n})-F_n(tau))$, where $F$ is an arbitrary cdf, differentiable at some point $tau$, and $F_n$ the corresponding empricial cdf. This seems rather counterintuitive, since, for every $n in N$, there is a deterministic correspondence between $alpha_n$ and $beta_n$. Precisely, we show that the pair $(alpha_n,beta_n)$ converges in law to a limit having independent components, namely a time-transformed Brownian bridge and a two-sided Poisson process. Since these processes have jumps, in particular if $F$ itself has jumps, the Skorokhod product space $D(R) times D(R)$ is the adequate choice for modeling this convergence in. We develop a short convergence theory for $D(R) times D(R)$ by establishing the classical principle, devised by Yu. V. Prokhorov, that finite-dimensional convergence and tightness imply weak convergence. Several tightness criteria are given. Finally, the convergence of the pair $(alpha_n,beta_n)$ implies convergence of each of its components, thus, in passing, we provide a thorough proof of these known convergence results in a very general setting. In fact, the condition on $F$ to be differentiable in at least one point is only required for $beta_n$ to converge and can be further weakened.
We study the rate of convergence of the Mallows distance between the empirical distribution of a sample and the underlying population. The surprising feature of our results is that the convergence rate is slower in the discrete case than in the absolutely continuous setting. We show how the hazard function plays a significant role in these calculations. As an application, we recall that the quantity studied provides an upper bound on the distance between the bootstrap distribution of a sample mean and its true sampling distribution. Moreover, the convenient properties of the Mallows metric yield a straightforward lower bound, and therefore a relatively precise description of the asymptotic performance of the bootstrap in this problem.
81 - Feng-Yu Wang 2020
Let $X_t$ be the (reflecting) diffusion process generated by $L:=Delta+ abla V$ on a complete connected Riemannian manifold $M$ possibly with a boundary $partial M$, where $Vin C^1(M)$ such that $mu(d x):= e^{V(x)}d x$ is a probability measure. We estimate the convergence rate for the empirical measure $mu_t:=frac 1 t int_0^t delta_{X_sd s$ under the Wasserstein distance. As a typical example, when $M=mathbb R^d$ and $V(x)= c_1- c_2 |x|^p$ for some constants $c_1in mathbb R, c_2>0$ and $p>1$, the explicit upper and lower bounds are present for the convergence rate, which are of sharp order when either $d<frac{4(p-1)}p$ or $dge 4$ and $ptoinfty$.
115 - Feng-Yu Wang 2021
The convergence rate in Wasserstein distance is estimated for the empirical measures of symmetric semilinear SPDEs. Unlike in the finite-dimensional case that the convergence is of algebraic order in time, in the present situation the convergence is of log order with a power given by eigenvalues of the underlying linear operator.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا