Do you want to publish a course? Click here

Magnetic structure of the promising candidate for three-dimensional artificial spin ice: small angle neutron diffraction and micromagnetic simulations

115   0   0.0 ( 0 )
 Added by Ilya Dubitskiy
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Geometrical frustration arised in spin ices leads to fascinating emergent physical properties. Nowadays there is a wide diversity of the artificial structures, mimicking spin ice at the nanoscale and demonstrating some new effects. Most of the nanoscaled spin ices are two dimensional. Ferromagnetic inverse opal-like structures (IOLS) are among inspiring examples of the three-dimensional system exhibiting spin ice behaviour. However detailed examination of its properties is not straightforward. Experimental technique which is able to unambiguously recover magnetization distribution in 3D mesoscaled structures is lacking. In this work we used an approach based on complementary exploiting of small-angle neutron diffraction technique and micromagnetic simulations. External magnetic field was applied along three main directions of the IOLS mesostructure. Comparison of the calculated and measured data allowed us to determine IOLS magnetic state. The results are in good agreement with the spin ice model. Moreover influence of the demagnetizing field and vortex states on the magnetizing process were revealed. Additionally, we speculate that this approach can be also applied to other 3D magnetic mesostructures.



rate research

Read More

We perform micromagnetic simulations of the magnetization distribution in inverse opal-like structures (IOLS) made from ferromagnetic materials (nickel and cobalt). It is shown that the unit cell of these complex structures, whose characteristic length is approximately 700 nm, can be divided into a set of structural elements some of which behave like Ising-like objects. A spin-ice behavior of IOLS is observed in a broad range of external magnetic fields. Numerical results describe successfully the experimental hysteresis curves of the magnetization in Ni- and Co-based IOLS. We conclude that ferromagnetic IOLS can be considered as the first realization of three-dimensional artificial spin ice.
Harnessing high-frequency spin dynamics in three-dimensional (3D) nanostructures may lead to paradigm-shifting, next generation devices including high density spintronics and neuromorphic systems. Despite remarkable progress in fabrication, the measurement and interpretation of spin dynamics in complex 3D structures remain exceptionally challenging. Here we take a first step and measure coherent spin waves within a 3D artificial spin ice (ASI) structure using Brillouin light scattering. The 3D-ASI was fabricated by using a combination of two-photon lithography and thermal evaporation. Two spin-wave modes were observed in the experiment whose frequencies showed a monotonic variation with the applied field strength. Numerical simulations qualitatively reproduced the observed modes. The simulated mode profiles revealed the collective nature of the modes extending throughout the complex network of nanowires while showing spatial quantization with varying mode quantization numbers. The study shows a well-defined means to explore high-frequency spin dynamics in complex 3D spintronic and magnonic structures.
Artificial square spin ices are structures composed of magnetic elements arranged on a geometrically frustrated lattice and located on the sites of a two-dimensional square lattice, such that there are four interacting magnetic elements at each vertex. Using a semi-analytical approach, we show that square spin ices exhibit a rich spin wave band structure that is tunable both by external magnetic fields and the configuration of individual elements. Internal degrees of freedom can give rise to equilibrium states with bent magnetization at the edges leading to characteristic excitations; in the presence of magnetostatic interactions these form separate bands analogous to impurity bands in semiconductors. Full-scale micromagnetic simulations corroborate our semi-analytical approach. Our results show that artificial square spin ices can be viewed as reconfigurable and tunable magnonic crystals that can be used as metamaterials for spin-wave-based applications at the nanoscale.
Artificial spin ice systems have seen burgeoning interest due to their intriguing physics and potential applications in reprogrammable memory, logic and magnonics. In-depth comparisons of distinct artificial spin systems are crucial to advancing the field and vital work has been done on characteristic behaviours of artificial spin ices arranged on different geometric lattices. Integration of artificial spin ice with functional magnonics is a relatively recent research direction, with a host of promising early results. As the field progresses, studies examining the effects of lattice geometry on the magnonic response are increasingly significant. While studies have investigated the effects of different lattice tilings such as square and kagome (honeycomb), little comparison exists between systems comprising continuously-connected nanostructures, where spin-waves propagate through the system via exchange interaction, and systems with nanobars disconnected at vertices where spin-waves are transferred via stray dipolar-field. Here, we perform a Brillouin light scattering study of the magnonic response in two kagome artificial spin ices, a continuously-connected system and a disconnected system with vertex gaps. We observe distinctly different high-frequency dynamics and characteristic magnetization reversal regimes between the systems, with key distinctions in system microstate during reversal, internal field profiles and spin-wave mode quantization numbers. These observations are pertinent for the fundamental understanding of artificial spin systems and the design and engineering of such systems for functional magnonic applications.
The study of magnetic correlations in dipolar-coupled nanomagnet systems with synchrotron x-ray scattering provides a means to uncover emergent phenomena and exotic phases, in particular in systems with thermally active magnetic moments. From the diffuse signal of soft x-ray resonant magnetic scattering, we have measured magnetic correlations in a highly dynamic artificial kagome spin ice with sub-70-nm Permalloy nanomagnets. On comparing experimental scattering patterns with Monte Carlo simulations based on a needle-dipole model, we conclude that kagome ice I phase correlations exist in our experimental system even in the presence of moment fluctuations, which is analogous to bulk spin ice and spin liquid behavior. In addition, we describe the emergence of quasi-pinch-points in the magnetic diffuse scattering in the kagome ice I phase. These quasi-pinch-points bear similarities to the fully developed pinch points with singularities of a magnetic Coulomb phase, and continually evolve into the latter on lowering the temperature. The possibility to measure magnetic diffuse scattering with soft x rays opens the way to study magnetic correlations in a variety of nanomagnetic systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا