Extended Bell inequality and maximum violation


Abstract in English

The original formula of Bell inequality (BI) in terms of two-spin singlet has to be modified for the entangled-state with parallel spin polarization. Based on classical statistics of the particle-number correlation, we prove in this paper an extended BI, which is valid for two-spin entangled states with both parallel and antiparallel polarizations. The BI and its violation can be formulated in a unified formalism based on the spin coherent-state quantum probability statistics with the state-density operator, which is separated to the local and non-local parts. The local part gives rise to the BI, while the violation is a direct result of the non-local quantum interference between two components of entangled state. The Bell measuring outcome correlation denoted by $P_{B}$ is always less than or at most equal to one for the local realistic model ($P_{B}^{lc}leq1$) regardless of the specific superposition coefficients of entangled state. Including the non-local quantum interference the maximum violation of BI is found as $P_{B}^{max}$ $=2$, which, however depends on state parameters and three measuring directions as well. Our result is suitable for entangled photon pairs.

Download