Emergent cooperative adaptive cruise control (CACC) strategies being proposed in the literature for platoon formation in the Connected Autonomous Vehicle (CAV) context mostly assume idealized fixed information flow topologies (IFTs) for the platoon, implying guaranteed vehicle-to-vehicle (V2V) communications for the IFT assumed. Since CACC strategies entail continuous information broadcasting, communication failures can occur in congested CAV traffic networks, leading to a platoons IFT varying dynamically. To enhance the performance of CACC strategies, this study proposes the idea of dynamically optimizing the IFT for CACC, labeled the CACC-OIFT strategy. Under CACC-OIFT, the vehicles in the platoon cooperatively determine in real-time which vehicles will dynamically deactivate or activate the send functionality of their V2V communication devices to generate IFTs that optimize the platoon performance in terms of string stability under the ambient traffic conditions. Given the adaptive Proportional-Derivative (PD) controller with a two-predecessor-following scheme, and the ambient traffic conditions and the platoon size just before the start of a time period, the IFT optimization model determines the optimal IFT that maximizes the expected string stability. The optimal IFT is deployed for that time period, and the adaptive PD controller continuously determines the car-following behaviors of the vehicles based on the unfolding degeneration scenario for each time instant within that period. The effectiveness of the proposed CACC-OIFT is validated through numerical experiments in NS-3 based on NGSIM field data. The results indicate that the proposed CACC-OIFT can significantly enhance the string stability of platoon control in an unreliable V2V communication context, outperforming CACCs with fixed IFTs or with passive adaptive schemes for IFT dynamics.