Do you want to publish a course? Click here

Disorder-robust entanglement transport

212   0   0.0 ( 0 )
 Added by Clemens Gneiting
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the disorder-perturbed transport of two entangled particles in the absence of backscattering. This situation is, for instance, realized along edges of topological insulators. We find profoundly different responses to disorder-induced dephasing for the center-of-mass and relative coordinates: While a mirror symmetry protects even highly delocalized relative states when resonant with the symmetry condition, delocalizations in the center of mass (e.g. two-particle N00N states) remain fully sensitive to disorder. We demonstrate the relevance of these differences to the example of interferometric entanglement detection. Our platform-independent analysis is based on the treatment of disorder-averaged quantum systems with quantum master equations.



rate research

Read More

We analyze the disorder-perturbed transport of quantum states in the absence of backscattering. This comprises, for instance, the propagation of edge-mode wave packets in topological insulators, or the propagation of photons in inhomogeneous media. We quantify the disorder-induced dephasing, which we show to be bound. Moreover, we identify a gap condition to remain in the backscattering-free regime despite disorder-induced momentum broadening. Our analysis comprises the full disorder-averaged quantum state, on the level of both populations and coherences, appreciating states as potential carriers of quantum information. The well-definedness of states is guaranteed by our treatment of the nonequilibrium dynamics with Lindblad master equations.
249 - C. M. Chandrashekar 2012
The time evolution of one- and two-dimensional discrete-time quantum walk with increase in disorder is studied. We use spatial, temporal and spatio-temporal broken periodicity of the unitary evolution as disorder to mimic the effect of disordered/random medium in our study. Disorder induces a dramatic change in the interference pattern leading to localization of the quantum walks in one- and two-dimensions. Spatial disorder results in the decreases of the particle and position entanglement in one-dimension and counter intuitively, an enhancement in entanglement with temporal and spatio-temporal disorder is seen. The study signifies that the Anderson localization of quantum state without compromising on the degree of entanglement could be implement in a large variety of physical settings where quantum walks has been realized. The study presented here could make it feasible to explore, theoretically and experimentally the interplay between disorder and entanglement. This also brings up a variety of intriguing questions relating to the negative and positive implications on algorithmic and other applications.
We investigate bipartite entanglement in random quantum $XY$ models at equilibrium. Depending on the intrinsic time scales associated with equilibration of the random parameters and measurements associated with observation of the system, we consider two distinct kinds of disorder, namely annealed and quenched disorders. We conduct a comparative study of the effects of disorder on nearest-neighbor entanglement, when the nature of randomness changes from being annealed to quenched. We find that entanglement properties of the annealed and quenched disordered systems are drastically different from each other. This is realized by identifying the regions of parameter space in which the nearest-neighbor state is entangled, and the regions where a disorder-induced enhancement of entanglement $-$ order-from-disorder $-$ is obtained. We also analyze the response of the quantum phase transition point of the ordered system with the infusion of disorder.
196 - Clemens Gneiting 2018
The active harnessing of quantum resources in engineered quantum devices poses unprecedented requirements on device control. Besides the residual interaction with the environment, causing environment-induced decoherence, uncontrolled parameters in the system itself -- disorder -- remains as a substantial factor limiting the precision and thus the performance of devices. These perturbations may arise, for instance, due to imperfect sample production, stray fields, or finite accuracy of control electronics. Disorder-dressed quantum evolution means a unifying framework, based on quantum master equations, to analyze how these detrimental influences cause deviations from the desired system dynamics. This description may thus contribute to unveiling and mitigating disorder effects towards robust schemes. To demonstrate the broad scope of this framework, we evaluate two distinct scenarios: a central spin immersed in an isotropic spin bath, and a random mass Dirac particle. In the former scenario, we demonstrate how the disorder average reflects purity oscillations, indicating the time- and state-dependent severity of the disorder impact. In the latter scenario, we discuss disorder-induced backscattering and disorder-induced Zitterbewegung as consequences of the breakup of spin-momentum locking.
It is common belief among physicists that entangled states of quantum systems loose their coherence rather quickly. The reason is that any interaction with the environment which distinguishes between the entangled sub-systems collapses the quantum state. Here we investigate entangled states of two trapped Ca$^+$ ions and observe robust entanglement lasting for more than 20 seconds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا