Do you want to publish a course? Click here

Theory of multiple-stellar population synthesis in a non-Hamiltonian setting

65   0   0.0 ( 0 )
 Added by Stefano Pasetto
 Publication date 2018
  fields Physics
and research's language is English
 Authors S. Pasetto




Ask ChatGPT about the research

We aim to investigate the connections existing between the density profiles of the stellar populations used to define a gravitationally bound stellar system and their star formation history: we do this by developing a general framework accounting for both classical stellar population theory and classical stellar dynamics. We extend the work of Pasetto et al. (2012) on a single composite-stellar population (CSP) to multiple CSPs, including also a phase-space description of the CSP concept. In this framework, we use the concept of distribution function to define the CSP in terms of mass, metallicity, and phase-space in a suitable space of existence $mathbb{E}$ of the CSP. We introduce the concept of foliation of $mathbb{E}$ to describe formally any CSP as sum of disjointed Simple Stellar Populations (SSP), with the aim to offer a more general formal setting to cast the equations of stellar populations theory and stellar dynamics theory. In doing so, we allow the CSP to be object of dissipation processes thus developing its dynamics in a general non-Hamiltonian framework. Furthermore, we investigate the necessary and sufficient condition to realize a multiple CSP consistent with its mass-metallicity and phase-space distribution function over its temporal evolution, for a collisionless CSP. Finally, analytical and numerical examples show the potential of the result obtained.



rate research

Read More

Comparison with artificial galaxy models is essential for translating the incomplete and low signal-to-noise data we can obtain on astrophysical stellar populations to physical interpretations which describe their composition, physical properties, histories and internal conditions. In particular, this is true for distant galaxies, whose unresolved light embeds clues to their formation and evolution as well as their impact on their wider environs. Stellar population synthesis models are now used as the foundation of analysis at all redshifts, but are not without their problems. Here we review the use of stellar population synthesis models, with a focus on applications in the distant Universe.
We have identified 1027 star forming complexes in a sample of 46 galaxies from the Spirals, Bridges, and Tails (SB&T) sample of interacting galaxies, and 693 star forming complexes in a sample of 38 non-interacting spiral (NIS) galaxies in $8rm{mu m}$ observations from the Spitzer Infrared Array Camera. We have used archival multi-wavelength UV-to IR observations to fit the observed spectral energy distribution (SED) of our clumps with the Code Investigating GALaxy Emission (CIGALE) using a double exponentially declined star formation history (SFH). We derive SFRs, stellar masses, ages and fractions of the most recent burst, dust attenuation, and fractional emission due to an AGN for these clumps. The resolved star formation main sequence holds on 2.5kpc scales, although it does not hold on 1kpc scales. We analyzed the relation between SFR, stellar mass, and age of the recent burst in the SB&T and NIS samples, and we found that the SFR per stellar mass is higher in the SB&T galaxies, and the clumps are younger in the galaxy pairs. We analyzed the SFR radial profile and found that SFR is enhanced through the disk and in the tidal features relative to normal spirals.
Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emission can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the total line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improve estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H$alpha$, and stellar masses derived from NIR broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H II regions and star-forming galaxies. Our models show improved agreement with the observed H II regions in the Ne III/O II plane and show satisfactory agreement with He II emission from $z=2$ galaxies when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions (LIERs).
123 - S. Pasetto , C. Chiosi , D. Kawata 2012
Aims. We present here a new theoretical approach to population synthesis. The aim is to predict colour magnitude diagrams (CMDs) for huge numbers of stars. With this method we generate synthetic CMDs for N-body simulations of galaxies. Sophisticated hydrodynamic N-body models of galaxies require equal quality simulations of the photometric properties of their stellar content. The only prerequisite for the method to work is very little information on the star formation and chemical enrichment histories, i.e. the age and metallicity of all star-particles as a function of time. The method takes into account the gap between the mass of real stars and that of the star-particles in N-body simulations, which best correspond to the mass of star clusters with different age and metallicity, i.e. a manifold of single stellar sopulations (SSP). Methods. The theory extends the concept of SSP to include the phase-space (position and velocity) of each star. Furthermore, it accelerates the building up of simulated CMD by using a database of theoretical SSPs that extends to all ages and metallicities of interest. Finally, it uses the concept of distribution functions to build up the CMD. The technique is independent of the mass resolution and the way the N-body simulation has been calculated. This allows us to generate CMDs for simulated stellar systems of any kind: from open clusters to globular clusters, dwarf galaxies, or spiral and elliptical galaxies. Results. The new theory is applied to an N-body simulation of a disc galaxy to test its performance and highlight its flexibility.
313 - Y.K. Ng 1998
A quantitative method is presented to compare observed and synthetic colour-magnitude diagrams (CMDs). The method is based on a chi^2 merit function for a point (c_i,m_i) in the observed CMD, which has a corresponding point in the simulated CMD within n*sigma(c_i,m_i) of the error ellipse. The chi^2 merit function is then combined with the Poisson merit function of the points for which no corresponding point was found within the n*sigma(c_i,m_i) error ellipse boundary. Monte-Carlo simulations are presented to demonstrate the diagnostics obtained from the combined (chi^2, Poisson) merit function through variation of different parameters in the stellar population synthesis tool. The simulations indicate that the merit function can potentially be used to reveal information about the initial mass function. Information about the star formation history of single stellar aggregates, such as open or globular clusters and possibly dwarf galaxies with a dominating stellar population, might not be reliable if one is dealing with a relatively small age range.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا