Do you want to publish a course? Click here

A sextet of clusters in the Vela OB2 region revealed by Gaia

77   0   0.0 ( 0 )
 Added by Tereza Jerabkova
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using Gaia DR2 data, combined with OmegaCAM ground-based optical photometry from the AD-HOC survey, and detailed Radial Velocity measurements from ESO-Gaia, we analyse in detail a 10x5 deg region around the Wolf-Rayet star $gamma^2$ Vel, including the previously known clusters Gamma Vel and NGC2547. Using clustering analysis that considers positions, proper motions and parallax, we discover 6 clusters or associations -- 4 of which appear new. Analysis of the colour-magnitude diagram for these clusters show that 4 of them formed coevally from the same molecular clouds 10 Myr ago, while NGC 2547 formed together with a newly discovered cluster 30 Myr ago. This study shows the incredible wealth of data provided by Gaia for the study of young stellar clusters.



rate research

Read More

Sco OB2 is the nearest OB association, extending over approximately 2000 sq.deg. on the sky. Only its brightest members are already known (from Hipparcos) across its entire size, while studies of its lower-mass population refer only to small portions of its extent. In this work we exploit the capabilities of Gaia DR2 measurements to search for Sco OB2 members across its entire size and down to the lowest stellar masses. We use both Gaia astrometric and photometric data to select association members, using minimal assumptions derived mostly from the Hipparcos studies. Gaia resolves small details in both the kinematics of individual Sco OB2 subgroups and their distances from the Sun. We develop methods to explore the 3D kinematics of stellar populations covering large sky areas. We find ~11000 pre-main sequence (PMS) Sco OB2 members (with <3% contamination), plus ~3600 MS candidate members with a larger (10-30%) field-star contamination. A higher-confidence subsample of ~9200 PMS (and ~1340 MS) members is also selected (<1% contamination for the PMS), affected however by larger (~15%) incompleteness. We classify separately stars in compact and diffuse populations. Most members belong to a few kinematically distinct diffuse populations, whose ensemble outlines the association shape. Upper Sco is the densest part of Sco OB2, with a complex spatial and kinematical structure, and no global pattern of motion. Other dense subclusters are found in Upper Centaurus-Lupus and in Lower Centaurus-Crux. Most clustered stars appear to be younger than the diffuse PMS population, suggesting star formation in small groups which rapidly disperse and dilute, while keeping memory of their original kinematics. We also find that the open cluster IC 2602 has a similar dynamics to Sco OB2, and its PMS members are evaporating and forming a ~10 deg halo around its double-peaked core.
We present observations of the Cygnus OB2 region obtained with the Giant Metrewave Radio Telescope (GMRT) at the frequencies of 325 MHz and 610 MHz. In this contribution we focus on the study of proplyd-like objects (also known as free-floating Evaporating Gas Globules or frEGGs) that typically show an extended cometary morphology. We identify eight objects previously studied at other wavelengths and derive their physical properties by obtaining their optical depth at radio-wavelengths. Using their geometry and the photoionization rate needed to produce their radio-continuum emission, we find that these sources are possibly ionized by a contribution of the stars Cyg OB2 #9 and Cyg OB2 #22. Spectral index maps of the eight frEGGs were constructed, showing a flat spectrum in radio frequencies in general. We interpret these as produced by optically-thin ionized gas, although it is possible that a combination of thermal emission, not necessarily optically thin, produced by a diffuse gas component and the instrument response (which detects more diffuse emission at low frequencies) can artificially generate negative spectral indices. In particular, for the case of the Tadpole we suggest that the observed emission is not of non-thermal origin despite the presence of regions with negative spectral indices in our maps.
110 - Angela Bragaglia 2017
Stellar clusters are important for astrophysics in many ways, for instance as optimal tracers of the Galactic populations to which they belong or as one of the best test bench for stellar evolutionary models. Gaia DR1, with TGAS, is just skimming the wealth of exquisite information we are expecting from the more advanced catalogues, but already offers good opportunities and indicates the vast potentialities. Gaia results can be efficiently complemented by ground-based data, in particular by large spectroscopic and photometric surveys. Examples of some scientific results of the Gaia-ESO survey are presented, as a teaser for what will be possible once advanced Gaia releases and ground-based data will be combined.
OB associations are the prime star forming sites in galaxies. However the detailed formation process of such stellar systems still remains a mystery. In this context, identifying the presence of substructures may help tracing the footprints of their formation process. Here, we present a kinematic study of the two massive OB associations Cygnus OB2 and Carina OB1 using the precise astrometry from the Gaia Data Release 2 and radial velocities. From the parallaxes of stars, these OB associations are confirmed to be genuine stellar systems. Both Cygnus OB2 and Carina OB1 are composed of a few dense clusters and a halo which have different kinematic properties: the clusters occupy regions of 5-8 parsecs in diameter and display small dispersions in proper motion, while the halos spread over tens of parsecs with a 2-3 times larger dispersions in proper motion. This is reminiscent of the so-called line width-size relation of molecular clouds related to turbulence. Considering that the kinematics and structural features were inherited from those of their natal clouds would then imply that the formation of OB associations may result from structure formation driven by supersonic turbulence, rather than from the dynamical evolution of individual embedded clusters.
Line-of-sight kinematic studies indicate that many Galactic globular clusters have a significant degree of internal rotation. However, three-dimensional kinematics from a combination of proper motions and line-of-sight velocities are needed to unveil the role of angular momentum in the formation and evolution of these old stellar systems. Here we present the first quantitative study of internal rotation on the plane-of-the-sky for a large sample of globular clusters using proper motions from Gaia DR2. We detect signatures of rotation in the tangential component of proper motions for 11 out of 51 clusters at a $>$3-sigma confidence level, confirming the detection reported in Gaia collaboration et al. (2018) for 8 clusters, and additionally identify 11 GCs with a 2-sigma rotation detection. For the clusters with a detected global rotation, we construct the two-dimensional rotation maps and proper motion rotation curves, and we assess the relevance of rotation with respect to random motions ($V/sigmasim0.08-0.51$). We find evidence of a correlation between the degree of internal rotation and relaxation time, highlighting the importance of long-term dynamical evolution in shaping the clusters current properties. This is a strong indication that angular momentum must have played a fundamental role in the earliest phases of cluster formation. Finally, exploiting the spatial information of the rotation maps and a comparison with line-of-sight data, we provide an estimate of the inclination of the rotation axis for a subset of 8 clusters. Our work demonstrates the potential of Gaia data for internal kinematic studies of globular clusters and provides the first step to reconstruct their intrinsic three-dimensional structure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا