Do you want to publish a course? Click here

Observations of Low-Frequency Radio Emission from Millisecond Pulsars and Multipath Propagation in the Interstellar Medium

83   0   0.0 ( 0 )
 Added by N. D. Ramesh Bhat
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Studying the gravitational-wave sky with pulsar timing arrays (PTAs) is a key science goal for the Square Kilometre Array (SKA) and its pathfinder telescopes. With current PTAs reaching sub-microsecond timing precision, making accurate measurements of interstellar propagation effects and mitigating them effectively has become increasingly important to realise PTA goals. As these effects are much stronger at longer wavelengths, low-frequency observations are most appealing for characterizing the interstellar medium (ISM) along the sight lines toward PTA pulsars. The Murchison Widefield Array (MWA) and the Engineering Development Array (EDA), which utilizes MWA technologies, present promising opportunities for undertaking such studies, particularly for PTA pulsars located in the southern sky. Such pulsars are also the prime targets for PTA efforts planned with the South African MeerKAT, and eventually with the SKA. In this paper we report on observations of two bright southern millisecond pulsars PSRs J0437-4715 and J2145-0750 made with these facilities; MWA observations sampling multiple frequencies across the 80-250 MHz frequency range, while the EDA providing direct-sampled baseband data to yield a large instantaneous usable bandwidth of $sim$200 MHz. Using these observations, we investigate various aspects relating to pulsar emission and ISM properties, such as spectral evolution of the mean pulse shape, scintillation as a function of frequency, chromaticity in interstellar dispersion, and flux density spectra at low frequencies. Systematic and regular monitoring observations will help ascertain the role of low-frequency measurements in PTA experiments, while simultaneously providing a detailed characterization of the ISM toward the pulsars, which will be useful in devising optimal observing strategies for future PTA experiments.



rate research

Read More

With LOFAR beginning operation in 2008 there is huge potential for studying pulsars with high signal to noise at low frequencies. We present results of observations made with the Westerbork Synthesis Radio Telescope to revisit, with modern technology, this frequency range. Coherently dedispersed profiles of millisecond pulsars obtained simultaneously between 115-175 MHz are presented. We consider the detections and non-detections of 14 MSPs in light of previous observations and the fluxes, dispersion measures and spectral indices of these pulsars. The excellent prospects for LOFAR finding new MSPs and studying the existing systems are then discussed in light of these results.
63 - M. Ruderman 2003
Low energy X-ray emission (0.1-10 keV) from all six millisecond radio pulsars (MSPs) for which such emission has been reported support a proposed pulsar magnetic field evolution previously compared only to radiopulse data: old, very strongly spun-up neutron stars become mainly orthogonal rotators (magnetic dipole moment perpendicular to stellar spin) or aligned rotators. The neutron star properties which lead to such evolution are reviewed. Special consideration is given to agreement between predictions and observed X-ray emission for the aligned MSP candidate PSR J0437-4715.
In the second paper of the series, we have modeled low frequency carbon radio recombination lines (CRRL) from the interstellar medium. Anticipating the LOw Frequency ARray (LOFAR) survey of Galactic CRRLs, we focus our study on the physical conditions of the diffuse cold neutral medium (CNM). We have used the improved departure coefficients computed in the first paper of the series to calculate line-to-continuum ratios. The results show that the line width and integrated optical depths of CRRL are sensitive probes of the electron density, gas temperature, and the emission measure of the cloud. Furthermore, the ratio of CRRL to the [CII] at 158 $mu$m line is a strong function of the temperature and density of diffuse clouds. Guided by our calculations, we analyze CRRL observations and illustrate their use with data from the literature.
We present deep polarimetric observations at 154 MHz with the Murchison Widefield Array (MWA), covering 625 deg^2 centered on RA=0 h, Dec=-27 deg. The sensitivity available in our deep observations allows an in-band, frequency-dependent analysis of polarized structure for the first time at long wavelengths. Our analysis suggests that the polarized structures are dominated by intrinsic emission but may also have a foreground Faraday screen component. At these wavelengths, the compactness of the MWA baseline distribution provides excellent snapshot sensitivity to large-scale structure. The observations are sensitive to diffuse polarized emission at ~54 resolution with a sensitivity of 5.9 mJy beam^-1 and compact polarized sources at ~2.4 resolution with a sensitivity of 2.3 mJy beam^-1 for a subset (400 deg^2) of this field. The sensitivity allows the effect of ionospheric Faraday rotation to be spatially and temporally measured directly from the diffuse polarized background. Our observations reveal large-scale structures (~1 deg - 8 deg in extent) in linear polarization clearly detectable in ~2 minute snapshots, which would remain undetectable by interferometers with minimum baseline lengths >110 m at 154 MHz. The brightness temperature of these structures is on average 4 K in polarized intensity, peaking at 11 K. Rotation measure synthesis reveals that the structures have Faraday depths ranging from -2 rad m^-2 to 10 rad m^-2 with a large fraction peaking at ~+1 rad m^-2. We estimate a distance of 51+/-20 pc to the polarized emission based on measurements of the in-field pulsar J2330-2005. We detect four extragalactic linearly polarized point sources within the field in our compact source survey. Based on the known polarized source population at 1.4 GHz and non-detections at 154 MHz, we estimate an upper limit on the depolarization ratio of 0.08 from 1.4 GHz to 154 MHz.
A new era of exploration of the low radio frequency Universe from the Moon will soon be underway with landed payload missions facilitated by NASAs Commercial Lunar Payload Services (CLPS) program. CLPS landers are scheduled to deliver two radio science experiments, ROLSES to the nearside and LuSEE to the farside, beginning in 2021. These instruments would be pathfinders for a 10-km diameter interferometric array, FARSIDE, composed of 128 pairs of dipole antennas proposed to be delivered to the lunar surface later in the decade. ROLSES and LuSEE, operating at frequencies from 100 kHz to a few tens of MHz, will investigate the plasma environment above the lunar surface and measure the fidelity of radio spectra on the surface. Both use electrically-short, spiral-tube deployable antennas and radio spectrometers based upon previous flight models. ROLSES will measure the photoelectron sheath density to better understand the charging of the lunar surface via photoionization and impacts from the solar wind, charged dust, and current anthropogenic radio frequency interference. LuSEE will measure the local magnetic field and exo-ionospheric density, interplanetary radio bursts, Jovian and terrestrial natural radio emission, and the galactic synchrotron spectrum. FARSIDE, and its precursor risk-reduction six antenna-node array PRIME, would be the first radio interferometers on the Moon. FARSIDE would break new ground by imaging radio emission from Coronal Mass Ejections (CME) beyond 2 solar radii, monitor auroral radiation from the B-fields of Uranus and Neptune (not observed since Voyager), and detect radio emission from stellar CMEs and the magnetic fields of nearby potentially habitable exoplanets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا