No Arabic abstract
In this short note we consider the oriented vertex Turan problem in the hypercube: for a fixed oriented graph $overrightarrow{F}$, determine the maximum size $ex_v(overrightarrow{F}, overrightarrow{Q_n})$ of a subset $U$ of the vertices of the oriented hypercube $overrightarrow{Q_n}$ such that the induced subgraph $overrightarrow{Q_n}[U]$ does not contain any copy of $overrightarrow{F}$. We obtain the exact value of $ex_v(overrightarrow{P_k}, overrightarrow{Q_n})$ for the directed path $overrightarrow{P_k}$, the exact value of $ex_v(overrightarrow{V_2}, overrightarrow{Q_n})$ for the directed cherry $overrightarrow{V_2}$ and the asymptotic value of $ex_v(overrightarrow{T}, overrightarrow{Q_n})$ for any directed tree $overrightarrow{T}$.
Let $H$ be a graph and $tgeq sgeq 2$ be integers. We prove that if $G$ is an $n$-vertex graph with no copy of $H$ and no induced copy of $K_{s,t}$, then $lambda(G) = Oleft(n^{1-1/s}right)$ where $lambda(G)$ is the spectral radius of the adjacency matrix of $G$. Our results are motivated by results of Babai, Guiduli, and Nikiforov bounding the maximum spectral radius of a graph with no copy (not necessarily induced) of $K_{s,t}$.
We find the asymptotic behavior of the Steiner k-diameter of the $n$-cube if $k$ is large. Our main contribution is the lower bound, which utilizes the probabilistic method.
Classical questions in extremal graph theory concern the asymptotics of $operatorname{ex}(G, mathcal{H})$ where $mathcal{H}$ is a fixed family of graphs and $G=G_n$ is taken from a `standard increasing sequence of host graphs $(G_1, G_2, dots)$, most often $K_n$ or $K_{n,n}$. Inverting the question, we can instead ask how large $e(G)$ can be with respect to $operatorname{ex}(G,mathcal{H})$. We show that the standard sequences indeed maximize $e(G)$ for some choices of $mathcal{H}$, but not for others. Many interesting questions and previous results arise very naturally in this context, which also, unusually, gives rise to sensible extremal questions concerning multigraphs and non-uniform hypergraphs.
The Tur{a}n inequalities and the higher order Tur{a}n inequalities arise in the study of Maclaurin coefficients of an entire function in the Laguerre-P{o}lya class. A real sequence ${a_{n}}$ is said to satisfy the Tur{a}n inequalities if for $ngeq 1$, $a_n^2-a_{n-1}a_{n+1}geq 0$. It is said to satisfy the higher order Tur{a}n inequalities if for $ngeq 1$, $4(a_{n}^2-a_{n-1}a_{n+1})(a_{n+1}^2-a_{n}a_{n+2})-(a_{n}a_{n+1}-a_{n-1}a_{n+2})^2geq 0$. A sequence satisfying the Turan inequalities is also called log-concave. For the partition function $p(n)$, DeSalvo and Pak showed that for $n>25$, the sequence ${ p(n)}_{n> 25}$ is log-concave, that is, $p(n)^2-p(n-1)p(n+1)>0$ for $n> 25$. It was conjectured by Chen that $p(n)$ satisfies the higher order Tur{a}n inequalities for $ngeq 95$. In this paper, we prove this conjecture by using the Hardy-Ramanujan-Rademacher formula to derive an upper bound and a lower bound for $p(n+1)p(n-1)/p(n)^2$. Consequently, for $ngeq 95$, the Jensen polynomials $g_{3,n-1}(x)=p(n-1)+3p(n)x+3p(n+1)x^2+p(n+2)x^3$ have only real zeros. We conjecture that for any positive integer $mgeq 4$ there exists an integer $N(m)$ such that for $ngeq N(m) $, the polynomials $sum_{k=0}^m {mchoose k}p(n+k)x^k$ have only real zeros. This conjecture was independently posed by Ono.
Combining two classical notions in extremal combinatorics, the study of Ramsey-Turan theory seeks to determine, for integers $mle n$ and $p leq q$, the number $mathsf{RT}_p(n,K_q,m)$, which is the maximum size of an $n$-vertex $K_q$-free graph in which every set of at least $m$ vertices contains a $K_p$. Two major open problems in this area from the 80s ask: (1) whether the asymptotic extremal structure for the general case exhibits certain periodic behaviour, resembling that of the special case when $p=2$; (2) constructing analogues of Bollobas-ErdH{o}s graphs with densities other than $1/2$. We refute the first conjecture by witnessing asymptotic extremal structures that are drastically different from the $p=2$ case, and address the second problem by constructing Bollobas-ErdH{o}s-type graphs using high dimensional complex spheres with all rational densities. Some matching upper bounds are also provided.