Do you want to publish a course? Click here

Invariant Information Clustering for Unsupervised Image Classification and Segmentation

249   0   0.0 ( 0 )
 Added by Xu Ji
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We present a novel clustering objective that learns a neural network classifier from scratch, given only unlabelled data samples. The model discovers clusters that accurately match semantic classes, achieving state-of-the-art results in eight unsupervised clustering benchmarks spanning image classification and segmentation. These include STL10, an unsupervised variant of ImageNet, and CIFAR10, where we significantly beat the accuracy of our closest competitors by 6.6 and 9.5 absolute percentage points respectively. The method is not specialised to computer vision and operates on any paired dataset samples; in our experiments we use random transforms to obtain a pair from each image. The trained network directly outputs semantic labels, rather than high dimensional representations that need external processing to be usable for semantic clustering. The objective is simply to maximise mutual information between the class assignments of each pair. It is easy to implement and rigorously grounded in information theory, meaning we effortlessly avoid degenerate solutions that other clustering methods are susceptible to. In addition to the fully unsupervised mode, we also test two semi-supervised settings. The first achieves 88.8% accuracy on STL10 classification, setting a new global state-of-the-art over all existing methods (whether supervised, semi-supervised or unsupervised). The second shows robustness to 90% reductions in label coverage, of relevance to applications that wish to make use of small amounts of labels. github.com/xu-ji/IIC



rate research

Read More

Sharing images online poses security threats to a wide range of users due to the unawareness of privacy information. Deep features have been demonstrated to be a powerful representation for images. However, deep features usually suffer from the issues of a large size and requiring a huge amount of data for fine-tuning. In contrast to normal images (e.g., scene images), privacy images are often limited because of sensitive information. In this paper, we propose a novel approach that can work on limited data and generate deep features of smaller size. For training images, we first extract the initial deep features from the pre-trained model and then employ the K-means clustering algorithm to learn the centroids of these initial deep features. We use the learned centroids from training features to extract the final features for each testing image and encode our final features with the triangle encoding. To improve the discriminability of the features, we further perform the fusion of two proposed unsupervised deep features obtained from different layers. Experimental results show that the proposed features outperform state-of-the-art deep features, in terms of both classification accuracy and testing time.
Semantic segmentation is one of the basic, yet essential scene understanding tasks for an autonomous agent. The recent developments in supervised machine learning and neural networks have enjoyed great success in enhancing the performance of the state-of-the-art techniques for this task. However, their superior performance is highly reliant on the availability of a large-scale annotated dataset. In this paper, we propose a novel fully unsupervised semantic segmentation method, the so-called Information Maximization and Adversarial Regularization Segmentation (InMARS). Inspired by human perception which parses a scene into perceptual groups, rather than analyzing each pixel individually, our proposed approach first partitions an input image into meaningful regions (also known as superpixels). Next, it utilizes Mutual-Information-Maximization followed by an adversarial training strategy to cluster these regions into semantically meaningful classes. To customize an adversarial training scheme for the problem, we incorporate adversarial pixel noise along with spatial perturbations to impose photometrical and geometrical invariance on the deep neural network. Our experiments demonstrate that our method achieves the state-of-the-art performance on two commonly used unsupervised semantic segmentation datasets, COCO-Stuff, and Potsdam.
Unsupervised learning has always been appealing to machine learning researchers and practitioners, allowing them to avoid an expensive and complicated process of labeling the data. However, unsupervised learning of complex data is challenging, and even the best approaches show much weaker performance than their supervised counterparts. Self-supervised deep learning has become a strong instrument for representation learning in computer vision. However, those methods have not been evaluated in a fully unsupervised setting. In this paper, we propose a simple scheme for unsupervised classification based on self-supervised representations. We evaluate the proposed approach with several recent self-supervised methods showing that it achieves competitive results for ImageNet classification (39% accuracy on ImageNet with 1000 clusters and 46% with overclustering). We suggest adding the unsupervised evaluation to a set of standard benchmarks for self-supervised learning. The code is available at https://github.com/Randl/kmeans_selfsuper
148 - Xu Shen , Xinmei Tian , Anfeng He 2019
Convolutional neural networks (CNNs) have achieved state-of-the-art results on many visual recognition tasks. However, current CNN models still exhibit a poor ability to be invariant to spatial transformations of images. Intuitively, with sufficient layers and parameters, hierarchical combinations of convolution (matrix multiplication and non-linear activation) and pooling operations should be able to learn a robust mapping from transformed input images to transform-invariant representations. In this paper, we propose randomly transforming (rotation, scale, and translation) feature maps of CNNs during the training stage. This prevents complex dependencies of specific rotation, scale, and translation levels of training images in CNN models. Rather, each convolutional kernel learns to detect a feature that is generally helpful for producing the transform-invariant answer given the combinatorially large variety of transform levels of its input feature maps. In this way, we do not require any extra training supervision or modification to the optimization process and training images. We show that random transformation provides significant improvements of CNNs on many benchmark tasks, including small-scale image recognition, large-scale image recognition, and image retrieval. The code is available at https://github.com/jasonustc/caffe-multigpu/tree/TICNN.
254 - Wenchao Du , Hu Chen , Hongyu Yang 2020
Recently, cross domain transfer has been applied for unsupervised image restoration tasks. However, directly applying existing frameworks would lead to domain-shift problems in translated images due to lack of effective supervision. Instead, we propose an unsupervised learning method that explicitly learns invariant presentation from noisy data and reconstructs clear observations. To do so, we introduce discrete disentangling representation and adversarial domain adaption into general domain transfer framework, aided by extra self-supervised modules including background and semantic consistency constraints, learning robust representation under dual domain constraints, such as feature and image domains. Experiments on synthetic and real noise removal tasks show the proposed method achieves comparable performance with other state-of-the-art supervised and unsupervised methods, while having faster and stable convergence than other domain adaption methods.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا