Nuclear and neutron matter equations of state from high-quality potentials up to fifth order of the chiral expansion


Abstract in English

We present predictions for the equation of state of symmetric nuclear and pure neutron matter based on recent high-quality nucleon-nucleon potentials from leading order to fifth order in the chiral expansion. We include as well the next-to-next-to-leading order (N2LO) chiral three-nucleon force whose low-energy constants cD and cE are fitted to the binding energies of 3H and 3He as well as the b{eta}-decay lifetime of 3H. The ground state energy per particle is computed in the particle- particle ladder approximation up to a few times saturation density. Due to the soft character of the interactions, uncertainties due to the convergence in many-body perturbation theory are small. We find that nuclear matter saturation is reproduced quantitatively at N3LO and N4LO, and therefore we encourage the application of these interactions in finite nuclei, where the description of ground- state energies and charge radii of medium-mass nuclei may be improved.

Download