Large deviations conditioned on large deviations I: Markov chain and Langevin equation


Abstract in English

We present a systematic analysis of stochastic processes conditioned on an empirical measure $Q_T$ defined in a time interval $[0,T]$ for large $T$. We build our analysis starting from a discrete time Markov chain. Results for a continuous time Markov process and Langevin dynamics are derived as limiting cases. We show how conditioning on a value of $Q_T$ modifies the dynamics. For a Langevin dynamics with weak noise, we introduce conditioned large deviations functions and calculate them using either a WKB method or a variational formulation. This allows us, in particular, to calculate the typical trajectory and the fluctuations around this optimal trajectory when conditioned on a certain value of $Q_T$.

Download