No Arabic abstract
In the present work, we investigate how the large-scale magnetic field of the Sun, in its three vector components, has evolved during most of cycle 24, from 2010 Jan to 2018 Apr. To filter out the small-scale field of the Sun, present in high-resolution synoptic maps, we use a spherical harmonic decomposition method, which decomposes the solar field in multipoles with different l degrees. By summing together the low-l multipoles, we reconstruct the large-scale field at a resolution similar to observed stellar magnetic fields, which allows the direct comparison between solar and stellar magnetic maps. During cycle 24, the `Sun-as-a-star magnetic field shows a polarity reversal in the radial and meridional components, but not in the azimuthal component. The large-scale solar field remains mainly poloidal with > 70% of its energy contained in the poloidal component. During its evolution, the large-scale field is more axisymmetric and more poloidal when near minima in sunspot numbers, and with a larger intensity near maximum. There is a correlation between toroidal energy and sunspot number, which indicates that spot fields are major contributors to the toroidal large-scale energy of the Sun. The solar large-scale magnetic properties fit smoothly with observational trends of stellar magnetism reported in See et al. The toroidal (Etor) and poloidal (Epol) energies are related as Etor ~Epol^{1.38 pm 0.04}. Similar to the stellar sample, the large-scale field of the Sun shows a lack of toroidal non-axisymmetric field.
We report the detection of a large-scale magnetic field at the surface of the slowly-rotating fully-convective M dwarf Proxima Centauri. Ten circular polarization spectra, collected from April to July 2017 with the HARPS-Pol spectropolarimeter, exhibit rotationally-modulated Zeeman signatures suggesting a stellar rotation period of $89.8 pm 4.0$ d. Using Zeeman-Doppler Imaging, we invert the circular polarization spectra into a surface distribution of the large-scale magnetic field. We find that Proxima Cen hosts a large-scale magnetic field of typical strength 200 G, whose topology is mainly poloidal, and moderately axisymmetric, featuring, in particular, a dipole component of 135 G tilted at 51$^{circ}$ to the rotation axis. The large-scale magnetic flux is roughly 3 times smaller than the flux measured from the Zeeman broadening of unpolarized lines, which suggests that the underlying dynamo is efficient at generating a magnetic field at the largest spatial scales. Our observations occur $sim$1 yr after the maximum of the reported 7 yr-activity cycle of Proxima Cen, which opens the door for the first long-term study of how the large-scale field evolves with the magnetic cycle in a fully-convective very-low-mass star. Finally, we find that Proxima Cens habitable zone planet, Proxima-b, is likely orbiting outside the Alfv`en surface, where no direct magnetic star-planet interactions occur.
We analyse the magnetic activity characteristics of the planet hosting Sun-like star, HD 1237, using HARPS spectro-polarimetric time-series data. We find evidence of rotational modulation of the magnetic longitudinal field measurements consistent with our ZDI analysis, with a period of 7 days. We investigate the effect of customising the LSD mask to the line depths of the observed spectrum and find that it has a minimal effect on shape of the extracted Stokes V profile but does result in a small increase in the S/N ($sim$ 7%). We find that using a Milne-Eddington solution to describe the local line profile provides a better fit to the LSD profiles in this slowly rotating star, which also impacts the recovered ZDI field distribution. We also introduce a fit-stopping criterion based on the information content (entropy) of the ZDI maps solution set. The recovered magnetic field maps show a strong (+90 G) ring-like azimuthal field distribution and a complex radial field dominating at mid latitudes ($sim$45 degrees). Similar magnetic field maps are recovered from data acquired five months apart. Future work will investigate how this surface magnetic field distribution impacts the coronal magnetic field and extended environment around this planet-hosting star.
We analyzed the data of Stokes $I$, $Q$, and $U$ in C- and X-bands and investigated the large-scale magnetic field structure of NGC 3627. The polarization intensity and angle in each band were derived using Stokes $Q$ and $U$ maps. The rotation measure was calculated using the polarization-angle maps. Moreover, the magnetic field strength was calculated by assuming energy equipartition with the cosmic ray electrons. The structure of the magnetic field was well aligned with the spiral arms, which were consistent with those in the former studies. We applied the magnetic vector reconstruction method to NGC 3627 to derive a magnetic vector map, which showed that northern and southern disks were dominant with inward and outward magnetic vectors, respectively. Furthermore, we discussed the large-scale structure of the magnetic field in NGC 3627 and observed that the structure is bi-symmetric spiral in nature, and that the number of magnetic field mode is $ m_{rm B} = 1 $ in outer region of galaxy. In addition, NGC 3627 has a mode of two spiral arms that were clearly visible in an optical image. The ratio of the mode of spiral arms to that of magnetic field is 2:1. In terms of NGC 3627, the large-scale magnetic field may be generated via the parametric resonance induced by the gravitational potential of the spiral arms.
We examine the frequency shifts in low-degree helioseismic modes from the Birmingham Solar-Oscillations Network (BiSON) covering the period from 1985 - 2016, and compare them with a number of global activity proxies well as a latitudinally-resolved magnetic index. As well as looking at frequency shifts in different frequency bands, we look at a parametrization of the shift as a cubic function of frequency. While the shifts in the medium- and highfrequency bands are very well correlated with all of the activity indices (with the best correlation being with the 10.7 cm radio flux), we confirm earlier findings that there appears to have been a change in the frequency response to activity during solar cycle 23, and the low frequency shifts are less correlated with activity in the last two cycles than they were in Cycle 22. At the same time, the more recent cycles show a slight increase in their sensitivity to activity levels at medium and higher frequencies, perhaps because a greater proportion of activity is composed of weaker or more ephemeral regions. This lends weight to the speculation that a fundamental change in the nature of the solar dynamo may be in progress.
Studying cool star magnetic activity gives an important insight into the stellar dynamo and its relationship with stellar properties, as well as allowing us to place the Suns magnetism in the context of other stars. Only 61 Cyg A (K5V) and $tau$ Boo (F8V) are currently known to have magnetic cycles like the Suns, where the large-scale magnetic field polarity reverses in phase with the stars chromospheric activity cycles. ${tau}$ Boo has a rapid $sim$240 d magnetic cycle, and it is not yet clear whether this is related to the stars thin convection zone or if the dynamo is accelerated by interactions between ${tau}$ Boo and its hot Jupiter. To shed light on this, we studied the magnetic activity of HD75332 (F7V) which has similar physical properties to ${tau}$ Boo and does not appear to host a hot Jupiter. We characterized its long term chromospheric activity variability over 53 yrs and used Zeeman Doppler Imaging to reconstruct the large-scale surface magnetic field for 12 epochs between 2007 and 2019. Although we observe only one reversal of the large-scale magnetic dipole, our results suggest that HD75332 has a rapid $sim$1.06 yr solar-like magnetic cycle where the magnetic field evolves in phase with its chromospheric activity. If a solar-like cycle is present, reversals of the large-scale radial field polarity are expected to occur at around activity cycle maxima. This would be similar to the rapid magnetic cycle observed for ${tau}$ Boo, suggesting that rapid magnetic cycles may be intrinsic to late-F stars and related to their shallow convection zones.