Do you want to publish a course? Click here

Automated Data Slicing for Model Validation:A Big data - AI Integration Approach

74   0   0.0 ( 0 )
 Added by Yeounoh Chung
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

As machine learning systems become democratized, it becomes increasingly important to help users easily debug their models. However, current data tools are still primitive when it comes to helping users trace model performance problems all the way to the data. We focus on the particular problem of slicing data to identify subsets of the validation data where the model performs poorly. This is an important problem in model validation because the overall model performance can fail to reflect that of the smaller subsets, and slicing allows users to analyze the model performance on a more granular-level. Unlike general techniques (e.g., clustering) that can find arbitrary slices, our goal is to find interpretable slices (which are easier to take action compared to arbitrary subsets) that are problematic and large. We propose Slice Finder, which is an interactive framework for identifying such slices using statistical techniques. Applications include diagnosing model fairness and fraud detection, where identifying slices that are interpretable to humans is crucial. This research is part of a larger trend of Big data and Artificial Intelligence (AI) integration and opens many opportunities for new research.



rate research

Read More

In Big data era, information integration often requires abundant data extracted from massive data sources. Due to a large number of data sources, data source selection plays a crucial role in information integration, since it is costly and even impossible to access all data sources. Data Source selection should consider both efficiency and effectiveness issues. For efficiency, the approach should achieve high performance and be scalability to fit large data source amount. From effectiveness aspect, data quality and overlapping of sources are to be considered, since data quality varies much from data sources, with significant differences in the accuracy and coverage of the data provided, and the overlapping of sources can even lower the quality of data integrated from selected data sources. In this paper, we study source selection problem in textit{Big Data Era} and propose methods which can scale to datasets with up to millions of data sources and guarantee the quality of results. Motivated by this, we propose a new object function taking the expected number of true values a source can provide as a criteria to evaluate the contribution of a data source. Based on our proposed index we present a scalable algorithm and two pruning strategies to improve the efficiency without sacrificing precision. Experimental results on both real world and synthetic data sets show that our methods can select sources providing a large proportion of true values efficiently and can scale to massive data sources.
Data integration has been studied extensively for decades and approached from different angles. However, this domain still remains largely rule-driven and lacks universal automation. Recent development in machine learning and in particular deep learning has opened the way to more general and more efficient solutions to data integration problems. In this work, we propose a general approach to modeling and integrating entities from structured data, such as relational databases, as well as unstructured sources, such as free text from news articles. Our approach is designed to explicitly model and leverage relations between entities, thereby using all available information and preserving as much context as possible. This is achieved by combining siamese and graph neural networks to propagate information between connected entities and support high scalability. We evaluate our method on the task of integrating data about business entities, and we demonstrate that it outperforms standard rule-based systems, as well as other deep learning approaches that do not use graph-based representations.
In any knowledge discovery process the value of extracted knowledge is directly related to the quality of the data used. Big Data problems, generated by massive growth in the scale of data observed in recent years, also follow the same dictate. A common problem affecting data quality is the presence of noise, particularly in classification problems, where label noise refers to the incorrect labeling of training instances, and is known to be a very disruptive feature of data. However, in this Big Data era, the massive growth in the scale of the data poses a challenge to traditional proposals created to tackle noise, as they have difficulties coping with such a large amount of data. New algorithms need to be proposed to treat the noise in Big Data problems, providing high quality and clean data, also known as Smart Data. In this paper, two Big Data preprocessing approaches to remove noisy examples are proposed: an homogeneous ensemble and an heterogeneous ensemble filter, with special emphasis in their scalability and performance traits. The obtained results show that these proposals enable the practitioner to efficiently obtain a Smart Dataset from any Big Data classification problem.
Next Generation Sequencing (NGS) technology has resulted in massive amounts of proteomics and genomics data. This data is of no use if it is not properly analyzed. ETL (Extraction, Transformation, Loading) is an important step in designing data analytics applications. ETL requires proper understanding of features of data. Data format plays a key role in understanding of data, representation of data, space required to store data, data I/O during processing of data, intermediate results of processing, in-memory analysis of data and overall time required to process data. Different data mining and machine learning algorithms require input data in specific types and formats. This paper explores the data formats used by different tools and algorithms and also presents modern data formats that are used on Big Data Platform. It will help researchers and developers in choosing appropriate data format to be used for a particular tool or algorithm.
Digital data is a gold mine for modern journalism. However, datasets which interest journalists are extremely heterogeneous, ranging from highly structured (relational databases), semi-structured (JSON, XML, HTML), graphs (e.g., RDF), and text. Journalists (and other classes of users lacking advanced IT expertise, such as most non-governmental-organizations, or small public administrations) need to be able to make sense of such heterogeneous corpora, even if they lack the ability to define and deploy custom extract-transform-load workflows, especially for dynamically varying sets of data sources. We describe a complete approach for integrating dynamic sets of heterogeneous datasets along the lines described above: the challenges we faced to make such graphs useful, allow their integration to scale, and the solutions we proposed for these problems. Our approach is implemented within the ConnectionLens system; we validate it through a set of experiments.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا