No Arabic abstract
This paper summarizes our recent works of studying AGN feedback in an isolated elliptical galaxy by performing high-resolution hydrodynamical numerical simulations. Bondi radius is resolved and the mass accretion rate of the black hole is calculated. The most updated AGN physics, namely the discrimination of cold and hot accretion modes and the exact descriptions of the AGN radiation and wind for a given accretion rate are adopted and their interaction with the gas in the host galaxy is calculated. Physical processes such as star formation and SNe feedback are taken into account. Consistent with observation, we find the AGN spends most of the time in the low-luminosity regime. AGN feedback overall suppresses the star formation; but depending on location in the galaxy and time, it can also enhance it. The light curve of specific star formation rate is not synchronous with the AGN light curve. We find that wind usually plays a dominant role in controlling the AGN luminosity and star formation, but radiation also cannot be neglected.
We have recently suggested that dust growth in the cold gas phase dominates the dust abundance in elliptical galaxies while dust is efficiently destroyed in the hot X-ray emitting plasma (hot gas). In order to understand the dust evolution in elliptical galaxies, we construct a simple model that includes dust growth in the cold gas and dust destruction in the hot gas. We also take into account the effect of mass exchange between these two gas components induced by active galactic nucleus (AGN) feedback. We survey reasonable ranges of the relevant parameters in the model and find that AGN feedback cycles actually produce a variety in cold gas mass and dust-to-gas ratio. By comparing with an observational sample of nearby elliptical galaxies, we find that, although the dust-to-gas ratio varies by an order of magnitude in our model, the entire range of the observed dust-to-gas ratios is difficult to be reproduced under a single parameter set. Variation of the dust growth efficiency is the most probable solution to explain the large variety in dust-to-gas ratio of the observational sample. Therefore, dust growth can play a central role in creating the variation in dust-to-gas ratio through the AGN feedback cycle and through the variation in dust growth efficiency.
We show, using global 3D grid-based hydrodynamical simulations, that Ultra Fast Outflows (UFOs) from Active Galactic Nuclei (AGN) result in considerable feedback of energy and momentum into the interstellar medium (ISM) of the host galaxy. The AGN wind interacts strongly with the inhomogeneous, two-phase ISM consisting of dense clouds embedded in a tenuous hot hydrostatic medium. The outflow floods through the inter-cloud channels, sweeps up the hot ISM, and ablates and disperses the dense clouds. The momentum of the UFO is primarily transferred to the dense clouds via the ram pressure in the channel flow, and the wind-blown bubble evolves in the energy-driven regime. Any dependence on UFO opening angle disappears after the first interaction with obstructing clouds. On kpc scales, therefore, feedback by UFOs operates similarly to feedback by relativistic AGN jets. Negative feedback is significantly stronger if clouds are distributed spherically, rather than in a disc. In the latter case the turbulent backflow of the wind drives mass inflow toward the central black hole. Considering the common occurrence of UFOs in AGN, they are likely to be important in the cosmological feedback cycles of galaxy formation.
Observations made during the last ten years with the Chandra X-ray Observatory have shed much light on the cooling gas in the centers of clusters of galaxies and the role of active galactic nucleus (AGN) heating. Cooling of the hot intracluster medium in cluster centers can feed the supermassive black holes found in the nuclei of the dominant cluster galaxies leading to AGN outbursts which can reheat the gas, suppressing cooling and large amounts of star formation. AGN heating can come in the form of shocks, buoyantly rising bubbles that have been inflated by radio lobes, and the dissipation of sound waves.
We present the results of a multi-wavelength follow up campaign for the luminous nuclear transient Gaia16aax, which was first identified in January 2016. The transient is spatially consistent with the nucleus of an active galaxy at z=0.25, hosting a black hole of mass $rm sim6times10^8M_odot$. The nucleus brightened by more than 1 magnitude in the Gaia G-band over a timescale of less than one year, before fading back to its pre-outburst state over the following three years. The optical spectra of the source show broad Balmer lines similar to the ones present in a pre-outburst spectrum. During the outburst, the $rm Halpha$ and $rm Hbeta$ emission lines develop a secondary peak. We also report on the discovery of two transients with similar light curve evolution and spectra: Gaia16aka and Gaia16ajq. We consider possible scenarios to explain the observed outbursts. We exclude that the transient event could be caused by a microlensing event, variable dust absorption or a tidal encounter between a neutron star and a stellar mass black hole in the accretion disk. We consider variability in the accretion flow in the inner part of the disk, or a tidal disruption event of a star $geq 1 M_{odot}$ by a rapidly spinning supermassive black hole as the most plausible scenarios. We note that the similarity between the light curves of the three Gaia transients may be a function of the Gaia alerts selection criteria.
The co-evolution between supermassive black holes and their environment is most directly traced by the hot atmospheres of dark matter halos. Cooling of the hot atmosphere supplies the central regions with fresh gas, igniting active galactic nuclei (AGN) with long duty cycles. Outflows from the central engine tightly couple with the surrounding gaseous medium and provide the dominant heating source preventing runaway cooling by carving cavities and driving shocks across the medium. The AGN feedback loop is a key feature of all modern galaxy evolution models. Here we review our knowledge of the AGN feedback process in the specific context of galaxy groups. Galaxy groups are uniquely suited to constrain the mechanisms governing the cooling-heating balance. Unlike in more massive halos, the energy supplied by the central AGN to the hot intragroup medium can exceed the gravitational binding energy of halo gas particles. We report on the state-of-the-art in observations of the feedback phenomenon and in theoretical models of the heating-cooling balance in galaxy groups. We also describe how our knowledge of the AGN feedback process impacts on galaxy evolution models and on large-scale baryon distributions. Finally, we discuss how new instrumentation will answer key open questions on the topic.