No Arabic abstract
We propose a numerical technique based on a combination of short-iterative Lanczos and exact diagonalization methods, suitable for simulating the time evolution of the reduced density matrix of a single qubit interacting with an environment. By choosing a mode discretization method and a flexible bath states truncation scheme, we are able to include in the physical description multiple-excitation processes, beyond weak coupling and Markov approximations. We apply our technique to the simulation of three different model Hamiltonians, which are relevant in the field of adiabatic quantum computation. We compare our results with those obtained on the basis of the widely used Lindblad master equation, as well as with well-known exact and approximated approaches. We show that our method is able to recover the thermodynamic behavior of the qubit-bath system, beyond the Born-Markov approximation. Finally, we show that even in the case of the adiabatic quantum annealing of a single qubit the bath can be beneficial in reaching the reduced system ground state.
The entanglement dynamics of two remote qubits is examined analytically. The qubits interact arbitrarily strongly with separate harmonic oscillators in the idealized degenerate limit of the Jaynes-Cummings Hamiltonian. In contrast to well known non-degenerate RWA results, it is shown that ideally degenerate qubits cannot induce bipartite entanglement between their partner oscillators.
Quantum systems driven by strong oscillating fields are the source of many interesting physical phenomena. In this work, we experimentally study the dynamics of a two-level system of a single spin driven in the strong-driving regime where the rotating-wave approximation is not valid. This two-level system is a subsystem of a single Nitrogen-Vacancy center coupled to a first-shell $^{13}$C nuclear spin in diamond at a level anti-crossing point that occurs in the $m_{s}=pm1$ manifold when the energy level splitting between the $m_{s}$ = $+1$ and $-1$ spin states due to the static magnetic field is $approx$ 127 MHz, which is roughly equal to the spectral splitting due to the $^{13}$C hyperfine interaction. The transition frequency of this electron spin two-level system in a static magnetic field of 28.9 G is 1.7 MHz and it can be driven only by the $z$-component of the RF field. Electron spin Rabi frequencies in this system can reach tens of MHz even for moderate RF powers. The simple sinusoidal Rabi oscillations that occur when the amplitude of the driving field is much smaller than the transition frequency become complex when the driving field strength is comparable or greater than the energy level splitting. We observe that the system oscillates faster than the amplitude of the driving field and the response of the system shows multiple frequencies.
Many superconducting qubit systems use the dispersive interaction between the qubit and a coupled harmonic resonator to perform quantum state measurement. Previous works have found that such measurements can induce state transitions in the qubit if the number of photons in the resonator is too high. We investigate these transitions and find that they can push the qubit out of the two-level subspace, and that they show resonant behavior as a function of photon number. We develop a theory for these observations based on level crossings within the Jaynes-Cummings ladder, with transitions mediated by terms in the Hamiltonian that are typically ignored by the rotating wave approximation. We find that the most important of these terms comes from an unexpected broken symmetry in the qubit potential. We confirm the theory by measuring the photon occupation of the resonator when transitions occur while varying the detuning between the qubit and resonator.
We report on deviations beyond the Born-Oppenheimer approximation in the potassium inter-atomic potentials. Identifying three up-to-now unknown $d$-wave Feshbach resonances, we significantly improve the understanding of the $^{39}$K inter-atomic potentials. Combining these observations with the most recent data on known inter- and intra-isotope Feshbach resonances, we show that Born-Oppenheimer corrections can be determined from atomic collisional properties alone and that significant differences between the homo- and heteronuclear case appear.
A microscopic derivation of the master equation for the Jaynes-Cummings model with cavity losses is given, taking into account the terms in the dissipator which vary with frequencies of the order of the vacuum Rabi frequency. Our approach allows to single out physical contexts wherein the usual phenomenological dissipator turns out to be fully justified and constitutes an extension of our previous analysis [Scala M. {em et al.} 2007 Phys. Rev. A {bf 75}, 013811], where a microscopic derivation was given in the framework of the Rotating Wave Approximation.