No Arabic abstract
We explore the origin of the trend of heavy elements in observed massive exoplanets. Coupling of better measurements of mass ($M_p$) and radius of exoplanets with planet structure models enables estimating the total heavy element mass ($M_Z$) in these planets. The corresponding relation is characterized by a power-law profile, $M_Z propto M_p^{3/5}$. We develop a simplified, but physically motivated analysis to investigate how the power-law profile can be produced under the current picture of planet formation. Making use of the existing semi-analytical formulae of accretion rates of pebbles and planetesimals, our analysis shows that the relation can be reproduced well if it traces the final stage of planet formation. In the stage, planets accrete solids from gapped planetesimal disks and gas accretion is limited by disk evolution. We also find that dust accretion accompanying with gas accretion does not contribute to $M_Z$ for planets with $M_p < 10^3 M_{oplus}$. Our findings are broadly consistent with that of previous studies, yet we explicitly demonstrate how planetesimal dynamics is crucial for better understanding the relation. While our approach is simple, we can also reproduce the trend of a correlation between planet metallicity and $M_p$ that is obtained by detailed population synthesis calculations, when the same assumption is adopted. Our analysis suggests that pebble accretion would not play a direct role at the final stage of planet formation, whereas radial drift of pebbles might be important indirectly for metal enrichment of planets. Detailed numerical simulations and more observational data are required for confirming our analysis.
Identification of the main planet formation site is fundamental to understanding how planets form and migrate to the current locations. We consider the heavy-element content trend of observed exoplanets derived from improved measurements of mass and radius, and explore how this trend can be used as a tracer of their formation sites. Using gas accretion recipes obtained from detailed hydrodynamical simulations, we confirm that the disk-limited gas accretion regime is most important for reproducing the heavy-element content trend. Given that such a regime is specified by two characteristic masses of planets, we compute these masses as a function of the distance ($r$) from the central star, and then examine how the regime appears in the mass-semimajor axis diagram. Our results show that a plausible solid accretion region emerges at $r simeq 0.6$ au and expands with increasing $r$, using the conventional disk model. Given that exoplanets that possess the heavy-element content trend distribute currently near their central stars, our results imply the importance of planetary migration that would occur after solid accretion onto planets might be nearly completed at $r geq 0.6$ au. Self-consistent simulations would be needed to verify the predictions herein.
Circumplanetary disks can be found around forming giant planets, regardless of whether core accretion or gravitational instability built the planet. We carried out state-of-the-art hydrodynamical simulations of the circumplanetary disks for both formation scenarios, using as similar initial conditions as possible to unveil possible intrinsic differences in the circumplanetary disk mass and temperature between the two formation mechanisms. We found that the circumplanetary disks mass linearly scales with the circumstellar disk mass. Therefore, in an equally massive protoplanetary disk, the circumplanetary disks formed in the disk instability model can be only a factor of eight more massive than their core-accretion counterparts. On the other hand, the bulk circumplanetary disk temperature differs by more than an order of magnitude between the two cases. The subdisks around planets formed by gravitational instability have a characteristic temperature below 100 K, while the core accretion circumplanetary disks are hot, with temperatures even greater than 1000 K when embedded in massive, optically thick protoplanetary disks. We explain how this difference can be understood as the natural result of the different formation mechanisms. We argue that the different temperatures should persist up to the point when a full-fledged gas giant forms via disk instability, hence our result provides a convenient criteria for observations to distinguish between the two main formation scenarios by measuring the bulk temperature in the planet vicinity.
We run numerical simulations to study the accretion of gas and dust grains onto gas giant planets embedded into massive protoplanetary discs. The outcome is found to depend on the disc cooling rate, planet mass, grain size and irradiative feedback from the planet. If radiative cooling is efficient, planets accrete both gas and pebbles rapidly, open a gap and usually become massive brown dwarfs. In the inefficient cooling case, gas is too hot to accrete onto the planet but pebble accretion continues and the planets migrate inward rapidly. Radiative feedback from the planet tends to suppress gas accretion. Our simulations predict that metal enrichment of planets by dust grain accretion inversely correlates with the final planet mass, in accordance with the observed trend in the inferred bulk composition of Solar System and exosolar giant planets. To account for observations, however, as much as ~30-50% of the dust mass should be in the form of large grains.
In the standard model of core accretion, the formation of giant planets occurs by two main processes: first, a massive core is formed by the accretion of solid material; then, when this core exceeds a critical value (typically greater than 10 Earth masses) a gaseous runaway growth is triggered and the planet accretes big quantities of gas in a short period of time until the planet achieves its final mass. Thus, the formation of a massive core has to occur when the nebular gas is still available in the disk. This phenomenon imposes a strong time-scale constraint in giant planet formation due to the fact that the lifetimes of the observed protoplanetary disks are in general lower than 10 Myr. The formation of massive cores before 10 Myr by accretion of big planetesimals (with radii > 10 km) in the oligarchic growth regime is only possible in massive disks. However, planetesimal accretion rates significantly increase for small bodies, especially for pebbles, particles of sizes between mm and cm, which are strongly coupled with the gas. In this work, we study the formation of giant planets incorporating pebble accretion rates in our global model of planet formation.
The dissociation and ionization of hydrogen, during the formation of giant planets via core accretion, reduces the effective adiabatic index $gamma$ of the gas and could trigger dynamical instability. We generalize the analysis of Chandrasekhar, who determined that the threshold for instability of a self-gravitating hydrostatic body lies at $gamma=4/3$, to account for the presence of a planetary core, which we model as an incompressible fluid. We show that the dominant effect of the core is to stabilize the envelope to radial perturbations, in some cases completely (i.e. for all $gamma > 1$). When instability is possible, unstable planetary configurations occupy a strip of $gamma$ values whose upper boundary falls below $gamma=4/3$. Fiducial evolutionary tracks of giant planets forming through core accretion appear unlikely to cross the dynamical instability strip that we define.