Do you want to publish a course? Click here

Microphysics of KCl and ZnS Clouds on GJ 1214b

69   0   0.0 ( 0 )
 Added by Peter Gao
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Clouds in the atmospheres of exoplanets confound characterization efforts by reducing, eliminating, and distorting spectral signatures of molecular abundances. As such, interpretations of exoplanet spectra strongly depend on the choice of cloud model, many of which are highly simplified and lack predictive power. In this work, we use a cloud model that treat microphysical processes to simulate potassium chloride (KCl) and zinc sulfide (ZnS) clouds in the atmosphere of the super Earth GJ 1214b and how they vary as a function of the strength of vertical mixing and the atmospheric metallicity. Microphysical processes control the size and spatial distribution of cloud particles, allowing for the computation of more physical cloud distributions than simpler models. We find that the mass and opacity of KCl clouds increase with mixing strength and metallicity, with the particle size and spatial distribution defined by nucleation, condensation, evaporation, and transport timescales. ZnS clouds cannot form without the presence of condensation nuclei, while heterogeneous nucleation of ZnS on KCl reduces particle sizes compared to pure KCl cases. In order to explain the flat transmission spectrum of GJ 1214b with homogeneously nucleated KCl clouds, the atmospheric metallicity must be at least 1000 $times$ solar, and the eddy diffusivity must be at least 10$^{10}$ cm$^2$ s$^{-1}$. We predict that JWST observations of GJ 1214b may reveal the presence of methane, carbon monoxide, and water, allowing for constraints to be placed on atmospheric metallicity and C/O ratio.



rate research

Read More

Recent observations of the transiting super-Earth GJ 1214b reveal that its atmosphere may be hydrogen-rich or water-rich in nature, with clouds or hazes potentially affecting its transmission spectrum in the optical and very-near-IR. Here we further examine the possibility that GJ 1214b does indeed possess a hydrogen-dominated atmosphere, which is the hypothesis that is favored by models of the bulk composition of the planet. We study the effects of non-equilibrium chemistry (photochemistry, thermal chemistry, and mixing) on the planets transmission spectrum. We furthermore examine the possibility that clouds could play a significant role in attenuating GJ 1214bs transmission spectrum at short wavelengths. We find that non-equilibrium chemistry can have a large effect on the overall chemical composition of GJ 1214bs atmosphere, however these changes mostly take place above the height in the atmosphere that is probed by transmission spectroscopy. The effects of non-equilibrium chemistry on GJ 1214bs transmission spectrum are therefore minimal, with the largest effects taking place if the planets atmosphere has super-solar metallicity and a low rate of vertical mixing. Interestingly, we find that the best fit to the observations of GJ 1214bs atmosphere in transmission occur if the planets atmosphere is deficient in CH4, and possesses a cloud layer at a pressure of ~200 mbar. This is consistent with a picture of efficient methane photolysis, accompanied by formation of organic haze that obscures the lower atmosphere of GJ 1214b at optical wavelengths. However, for methane to be absent from GJ 1214bs transmission spectrum, UV photolysis of this molecule must be efficient at pressures of greater than ~1 mbar, whereas we find that methane only photolyzes to pressures less than 0.1 mbar, even under the most optimistic assumptions. (Abridged)
Recent observations of the super-Earth GJ 1214b show that it has a relatively featureless transmission spectrum. One suggestion is that these observations indicate that the planets atmosphere is vertically compact, perhaps due to a water-rich composition that yields a large mean molecular weight. Another suggestion is that the atmosphere is hydrogen/helium-rich with clouds that obscure predicted absorption features. Previous models that incorporate clouds have included their effect without a strong physical motivation for their existence. Here, we present model atmospheres of GJ 1214b that include physically-motivated clouds of two types. We model the clouds that form as a result of condensation in chemical equilibrium, as they likely do on brown dwarfs, which include KCl and ZnS for this planet. We also include clouds that form as a result of photochemistry, forming a hydrocarbon haze layer. We use a photochemical kinetics model to understand the vertical distribution and available mass of haze-forming molecules. We model both solar and enhanced-metallicity cloudy models and determine the cloud properties necessary to match observations. In enhanced-metallicity atmospheres, we find that the equilibrium clouds can match the observations of GJ 1214b if they are lofted high into the atmosphere and have a low sedimentation efficiency (fsed=0.1). We find that models with a variety of hydrocarbon haze properties can match the observations. Particle sizes from 0.01 to 0.25 micron can match the transmission spectrum with haze-forming efficiencies as low as 1-5%.
GJ 1214 is orbited by a transiting super-Earth-mass planet. It is a primary target for ongoing efforts to understand the emerging population of super-Earth-mass planets around M dwarfs. We present new precision astrometric measurements, a re-analysis of HARPS radial velocity measurements, and medium-resolution infrared spectroscopy of GJ 1214. We combine these measurements with recent transit follow-up observations and new catalog photometry to provide a comprehensive update of the star-planet properties. The distance is obtained with 0.6% relative uncertainty using CAPScam astrometry. The new value increases the nominal distance to the star by ~10% and is significantly more precise than previous measurements. Updated Doppler measurements combined with published transit observations significantly refine the constraints on the orbital solution. The analysis of the infrared spectrum and photometry confirm that the star is enriched in metals compared to the Sun. Using all this information, combined with empirical mass-luminosity relations for low mass stars, we derive updated values for the bulk properties of the star-planet system. We also use infrared absolute fluxes to estimate the stellar radius and to re-derive the star-planet properties. Both approaches provide very consistent values for the system. Our analysis shows indicates that the favoured mean density of GJ 1214b is 1.6 +/-0.6 g cm^{-3}. We illustrate how fundamental properties of M dwarfs are of paramount importance in the proper characterization of the low mass planetary candidates orbiting them. Given that the distance is now known to better than 1%, interferometric measurements of the stellar radius, additional high precision Doppler observations, and/or or detection of the secondary transit (occultation), are necessary to further improve the constraints on the GJ 1214 star-planet properties.
GJ 1214b is one of the few known transiting super-Earth-sized exoplanets with a measured mass and radius. It orbits an M-dwarf, only 14.55 pc away, making it a favorable candidate for follow-up studies. However, the composition of GJ 1214bs mysterious atmosphere has yet to be fully unveiled. Our goal is to distinguish between the various proposed atmospheric models to explain the properties of GJ 1214b: hydrogen-rich or hydrogen-He mix, or a heavy molecular weight atmosphere with reflecting high clouds, as latest studies have suggested. Wavelength-dependent planetary radii measurements from the transit depths in the optical/NIR are the best tool to investigate the atmosphere of GJ 1214b. We present here (i) photometric transit observations with a narrow-band filter centered on 2.14 microns and a broad-band I-Bessel filter centered on 0.8665 microns, and (ii) transmission spectroscopy in the H and K atmospheric windows that cover three transits. The obtained photometric and spectrophotometric time series were analyzed with MCMC simulations to measure the planetary radii as a function of wavelength. We determined radii ratios of 0.1173 for I-Bessel and 0.11735 at 2.14 microns. Our measurements indicate a flat transmission spectrum, in agreement with last atmospheric models that favor featureless spectra with clouds and high molecular weight compositions.
The benchmark exoplanet GJ 1214b is one of the best studied transiting planets in the transition zone between rocky Earth-sized planets and gas or ice giants. This class of super-Earth/mini-Neptune planets is unknown in our Solar System, yet is one of the most frequently detected classes of exoplanets. Understanding the transition from rocky to gaseous planets is a crucial step in the exploration of extrasolar planetary systems, in particular with regard to the potential habitability of this class of planets. GJ 1214b has already been studied in detail from various platforms at many different wavelengths. Our airborne observations with SOFIA add information in the Paschen-alpha cont. 1.9 micron infrared wavelength band, which is not accessible by any other current ground- or space-based instrument due to telluric absorption or limited spectral coverage. We used FLIPO and FPI+ on SOFIA to comprehensively analyse the transmission signal of the possible water-world GJ 1214b through photometric observations during transit in three optical and one infrared channels. We present four simultaneous light curves and corresponding transit depths in three optical and one infrared channel, which we compare to previous observations and state-of-the-art synthetic atmospheric models of GJ 1214b. The final precision in transit depth is between 1.5 and 2.5 times the theoretical photon noise limit, not sensitive enough to constrain the theoretical models any better than previous observations. This is the first exoplanet observation with SOFIA that uses its full set of instruments available to exoplanet spectrophotometry. Therefore we use these results to evaluate SOFIAs potential in this field and suggest future improvements.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا