Do you want to publish a course? Click here

Constraining Strong c-Wilf Equivalence Using Cluster Poset Asymptotics

122   0   0.0 ( 0 )
 Added by Mitchell Lee
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Let $pi in mathfrak{S}_m$ and $sigma in mathfrak{S}_n$ be permutations. An occurrence of $pi$ in $sigma$ as a consecutive pattern is a subsequence $sigma_i sigma_{i+1} cdots sigma_{i+m-1}$ of $sigma$ with the same order relations as $pi$. We say that patterns $pi, tau in mathfrak{S}_m$ are strongly c-Wilf equivalent if for all $n$ and $k$, the number of permutations in $mathfrak{S}_n$ with exactly $k$ occurrences of $pi$ as a consecutive pattern is the same as for $tau$. In 2018, Dwyer and Elizalde conjectured (generalizing a conjecture of Elizalde from 2012) that if $pi, tau in mathfrak{S}_m$ are strongly c-Wilf equivalent, then $(tau_1, tau_m)$ is equal to one of $(pi_1, pi_m)$, $(pi_m, pi_1)$, $(m+1 - pi_1, m+1-pi_m)$, or $(m+1 - pi_m, m+1 - pi_1)$. We prove this conjecture using the cluster method introduced by Goulden and Jackson in 1979, which Dwyer and Elizalde previously applied to prove that $|pi_1 - pi_m| = |tau_1 - tau_m|$. A consequence of our result is the full classification of c-Wilf equivalence for a special class of permutations, the non-overlapping permutations. Our approach uses analytic methods to approximate the number of linear extensions of the cluster posets of Elizalde and Noy.



rate research

Read More

102 - Ting Guo 2018
Stankova and West showed that for any non-negative integer $s$ and any permutation $gamma$ of ${4,5,dots,s+3}$ there are as many permutations that avoid $231gamma$ as there are that avoid $312gamma$. We extend this result to the setting of words.
139 - Michael Ren 2020
Building off recent work of Garg and Peng, we continue the investigation into classical and consecutive pattern avoidance in rooted forests, resolving some of their conjectures and questions and proving generalizations whenever possible. Through extensions of the forest Simion-Schmidt bijection introduced by Anders and Archer, we demonstrate a new family of forest-Wilf equivalences, completing the classification of forest-Wilf equivalence classes for sets consisting of a pattern of length 3 and a pattern of length at most $5$. We also find a new family of nontrivial c-forest-Wilf equivalences between single patterns using the forest analogue of the Goulden-Jackson cluster method, showing that a $(1-o(1))^n$-fraction of patterns of length $n$ satisfy a nontrivial c-forest-Wilf equivalence and that there are c-forest-Wilf equivalence classes of patterns of length $n$ of exponential size. Additionally, we consider a forest analogue of super-strong-c-Wilf equivalence, introduced for permutations by Dwyer and Elizalde, showing that super-strong-c-forest-Wilf equivalences are trivial by enumerating linear extensions of forest cluster posets. Finally, we prove a forest analogue of the Stanley-Wilf conjecture for avoiding a single pattern as well as certain other sets of patterns. Our techniques are analytic, easily generalizing to different types of pattern avoidance and allowing for computations of convergent lower bounds of the forest Stanley-Wilf limit in the cases covered by our result. We end with several open questions and directions for future research, including some on the limit distributions of certain statistics of pattern-avoiding forests.
The origin of matter-antimatter asymmetry is one of the most important outstanding problems at the interface of particle physics and cosmology. Gravitational leptogenesis (baryogenesis) provides a possible mechanism through explicit couplings of spacetime curvature to appropriate lepton (or baryon) currents. In this paper, the idea that these strong equivalence principle violating interactions could be generated automatically through quantum loop effects in curved spacetime is explored, focusing on the realisation of the discrete symmetries C, CP and CPT which must be broken to induce matter-antimatter asymmetry. The related issue of quantum corrections to the dispersion relation for neutrino propagation in curved spacetime is considered within a fully covariant framework.
We launch a systematic study of the refined Wilf-equivalences by the statistics $mathsf{comp}$ and $mathsf{iar}$, where $mathsf{comp}(pi)$ and $mathsf{iar}(pi)$ are the number of components and the length of the initial ascending run of a permutation $pi$, respectively. As Comtet was the first one to consider the statistic $mathsf{comp}$ in his book {em Analyse combinatoire}, any statistic equidistributed with $mathsf{comp}$ over a class of permutations is called by us a {em Comtet statistic} over such class. This work is motivated by a triple equidistribution result of Rubey on $321$-avoiding permutations, and a recent result of the first and third authors that $mathsf{iar}$ is a Comtet statistic over separable permutations. Some highlights of our results are: (1) Bijective proofs of the symmetry of the double Comtet distribution $(mathsf{comp},mathsf{iar})$ over several Catalan and Schroder classes, preserving the values of the left-to-right maxima. (2) A complete classification of $mathsf{comp}$- and $mathsf{iar}$-Wilf-equivalences for length $3$ patterns and pairs of length $3$ patterns. Calculations of the $(mathsf{des},mathsf{iar},mathsf{comp})$ generating functions over these pattern avoiding classes and separable permutations. (3) A further refinement by the Comtet statistic $mathsf{iar}$, of Wangs recent descent-double descent-Wilf equivalence between separable permutations and $(2413,4213)$-avoiding permutations.
145 - John Lenz , Dhruv Mubayi 2012
Chung and Graham began the systematic study of k-uniform hypergraph quasirandom properties soon after the foundational results of Thomason and Chung-Graham-Wilson on quasirandom graphs. One feature that became apparent in the early work on k-uniform hypergraph quasirandomness is that properties that are equivalent for graphs are not equivalent for hypergraphs, and thus hypergraphs enjoy a variety of inequivalent quasirandom properties. In the past two decades, there has been an intensive study of these disparate notions of quasirandomness for hypergraphs, and an open problem that has emerged is to determine the relationship between them. Our main result is to determine the poset of implications between these quasirandom properties. This answers a recent question of Chung and continues a project begun by Chung and Graham in their first paper on hypergraph quasirandomness in the early 1990s.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا