No Arabic abstract
This work provides a simple approach to discover tight object bounding boxes with only image-level supervision, called Tight box mining with Surrounding Segmentation Context (TS2C). We observe that object candidates mined through current multiple instance learning methods are usually trapped to discriminative object parts, rather than the entire object. TS2C leverages surrounding segmentation context derived from weakly-supervised segmentation to suppress such low-quality distracting candidates and boost the high-quality ones. Specifically, TS2C is developed based on two key properties of desirable bounding boxes: 1) high purity, meaning most pixels in the box are with high object response, and 2) high completeness, meaning the box covers high object response pixels comprehensively. With such novel and computable criteria, more tight candidates can be discovered for learning a better object detector. With TS2C, we obtain 48.0% and 44.4% mAP scores on VOC 2007 and 2012 benchmarks, which are the new state-of-the-arts.
Weakly-supervised object detection (WSOD) has emerged as an inspiring recent topic to avoid expensive instance-level object annotations. However, the bounding boxes of most existing WSOD methods are mainly determined by precomputed proposals, thereby being limited in precise object localization. In this paper, we defend the problem setting for improving localization performance by leveraging the bounding box regression knowledge from a well-annotated auxiliary dataset. First, we use the well-annotated auxiliary dataset to explore a series of learnable bounding box adjusters (LBBAs) in a multi-stage training manner, which is class-agnostic. Then, only LBBAs and a weakly-annotated dataset with non-overlapped classes are used for training LBBA-boosted WSOD. As such, our LBBAs are practically more convenient and economical to implement while avoiding the leakage of the auxiliary well-annotated dataset. In particular, we formulate learning bounding box adjusters as a bi-level optimization problem and suggest an EM-like multi-stage training algorithm. Then, a multi-stage scheme is further presented for LBBA-boosted WSOD. Additionally, a masking strategy is adopted to improve proposal classification. Experimental results verify the effectiveness of our method. Our method performs favorably against state-of-the-art WSOD methods and knowledge transfer model with similar problem setting. Code is publicly available at url{https://github.com/DongSky/lbba_boosted_wsod}.
Data augmentation is vital for deep learning neural networks. By providing massive training samples, it helps to improve the generalization ability of the model. Weakly supervised semantic segmentation (WSSS) is a challenging problem that has been deeply studied in recent years, conventional data augmentation approaches for WSSS usually employ geometrical transformations, random cropping and color jittering. However, merely increasing the same contextual semantic data does not bring much gain to the networks to distinguish the objects, e.g., the correct image-level classification of aeroplane may be not only due to the recognition of the object itself, but also its co-occurrence context like sky, which will cause the model to focus less on the object features. To this end, we present a Context Decoupling Augmentation (CDA) method, to change the inherent context in which the objects appear and thus drive the network to remove the dependence between object instances and contextual information. To validate the effectiveness of the proposed method, extensive experiments on PASCAL VOC 2012 dataset with several alternative network architectures demonstrate that CDA can boost various popular WSSS methods to the new state-of-the-art by a large margin.
Acquiring sufficient ground-truth supervision to train deep visual models has been a bottleneck over the years due to the data-hungry nature of deep learning. This is exacerbated in some structured prediction tasks, such as semantic segmentation, which requires pixel-level annotations. This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation. We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths, which can be used for training more accurate segmentation models. In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes, and the underlying relations between a pair of images are characterized by an efficient co-attention mechanism. Moreover, in order to prevent the model from paying excessive attention to common semantics only, we further propose a graph dropout layer, encouraging the model to learn more accurate and complete object responses. The whole network is end-to-end trainable by iterative message passing, which propagates interaction cues over the images to progressively improve the performance. We conduct experiments on the popular PASCAL VOC 2012 and COCO benchmarks, and our model yields state-of-the-art performance. Our code is available at: https://github.com/Lixy1997/Group-WSSS.
This paper studies the problem of learning semantic segmentation from image-level supervision only. Current popular solutions leverage object localization maps from classifiers as supervision signals, and struggle to make the localization maps capture more complete object content. Rather than previous efforts that primarily focus on intra-image information, we address the value of cross-image semantic relations for comprehensive object pattern mining. To achieve this, two neural co-attentions are incorporated into the classifier to complimentarily capture cross-image semantic similarities and differences. In particular, given a pair of training images, one co-attention enforces the classifier to recognize the common semantics from co-attentive objects, while the other one, called contrastive co-attention, drives the classifier to identify the unshared semantics from the rest, uncommon objects. This helps the classifier discover more object patterns and better ground semantics in image regions. In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference, hence eventually benefiting semantic segmentation learning. More essentially, our algorithm provides a unified framework that handles well different WSSS settings, i.e., learning WSSS with (1) precise image-level supervision only, (2) extra simple single-label data, and (3) extra noisy web data. It sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability. Moreover, our approach ranked 1st place in the Weakly-Supervised Semantic Segmentation Track of CVPR2020 Learning from Imperfect Data Challenge.
Weakly supervised image segmentation trained with image-level labels usually suffers from inaccurate coverage of object areas during the generation of the pseudo groundtruth. This is because the object activation maps are trained with the classification objective and lack the ability to generalize. To improve the generality of the objective activation maps, we propose a region prototypical network RPNet to explore the cross-image object diversity of the training set. Similar object parts across images are identified via region feature comparison. Object confidence is propagated between regions to discover new object areas while background regions are suppressed. Experiments show that the proposed method generates more complete and accurate pseudo object masks, while achieving state-of-the-art performance on PASCAL VOC 2012 and MS COCO. In addition, we investigate the robustness of the proposed method on reduced training sets.