Do you want to publish a course? Click here

Velocity-resolved reverberation mapping of five bright Seyfert 1 galaxies

271   0   0.0 ( 0 )
 Added by Gisella De Rosa
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the first results from a reverberation-mapping campaign undertaken during the first half of 2012, with additional data on one AGN (NGC 3227) from a 2014 campaign. Our main goals are (1) to determine the black hole masses from continuum-Hbeta reverberation signatures, and (2) to look for velocity-dependent time delays that might be indicators of the gross kinematics of the broad-line region. We successfully measure Hbeta time delays and black hole masses for five AGNs, four of which have previous reverberation mass measurements. The values measured here are in agreement with earlier estimates, though there is some intrinsic scatter beyond the formal measurement errors. We observe velocity dependent Hbeta lags in each case, and find that the patterns have changed in the intervening five years for three AGNs that were also observed in 2007.



rate research

Read More

We present the results from a detailed analysis of photometric and spectrophotometric data on five Seyfert 1 galaxies observed as a part of a recent reverberation mapping program. The data were collected at several observatories over a 140-day span beginning in 2010 August and ending in 2011 January. We obtained high sampling-rate light curves for Mrk 335, Mrk 1501, 3C120, Mrk 6, and PG2130+099, from which we have measured the time lag between variations in the 5100 Angstrom continuum and the H-beta broad emission line. We then used these measurements to calculate the mass of the supermassive black hole at the center of each of these galaxies. Our new measurements substantially improve previous measurements of MBH and the size of the broad line-emitting region for four sources and add a measurement for one new object. Our new measurements are consistent with photoionization physics regulating the location of the broad line region in active galactic nuclei.
We present optical continuum lags for two Seyfert 1 galaxies, MCG+08-11-011 and NGC 2617, using monitoring data from a reverberation mapping campaign carried out in 2014. Our light curves span the ugriz filters over four months, with median cadences of 1.0 and 0.6 days for MCG+08-11-011 and NGC,2617, respectively, combined with roughly daily X-ray and near-UV data from Swift for NGC 2617. We find lags consistent with geometrically thin accretion-disk models that predict a lag-wavelength relation of $tau propto lambda^{4/3}$. However, the observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC,2617. These differences can be explained if the mass accretion rates are larger than inferred from the optical luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC,2617, although uncertainty in the SMBH masses determines the significance of this result. While the X-ray variability in NGC,2617 precedes the UV/optical variability, the long 2.6 day lag is problematic for coronal reprocessing models.
A large reverberation mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hbeta 4861 and He II 4686 and a central black hole mass measurement of about 10 million solar masses, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hbeta measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hbeta-emitting broad-line region and the AGN luminosity. It was necessary to detrend the continuum and Hbeta and He II 4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.
NGC 2617 has attracted a lot of attention after the detection of the changes in spectral type, and its geometry and kinematics of broad-line region (BLR) are still ambiguous. In this paper, we present the high cadence ($sim$ 2 days) reverberation mapping campaign of NGC 2617 from 2019 October to 2020 May undertaken at Lijiang 2.4 m telescope. For the first time, the velocity-resolved reverberation signature of the object was successfully detected. Both H$alpha$ and H$beta$ show an asymmetrical profile with a peak in the velocity-resolved time lags. For each of both lines, the lag of the line core is longer than those of the relevant wings, and the peak of the velocity-resolved lags is slightly blueshifted. These characteristics are not consistent with the theoretical prediction of the inflow, outflow or Keplerian disk model. Our observations give the time lags ofH$alpha$, H$beta$, H$gamma$, and He I, with a ratio of $tau_{rm{H}alpha}$:$tau_{rm{H}beta}$:$tau_{rm{H}gamma}$:$tau_{rm{He~I}}$ = 1.27:1.00:0.89:0.20, which indicates a stratified structure in the BLR of the object. It is the first time that the lags of H$alpha$ and He I are obtained. Assuming a virial factor of $f$ = 5.5 for dispersion width of line, the masses of black hole derived from H$alpha$ and H$beta$ are $rm{23.8^{+5.4}_{-2.7}}$ and $rm{21.1^{+3.8}_{-4.4}} times 10^{6}M_{odot}$, respectively. Our observed results indicate the complexity of the BLR of NGC 2617.
We present the first results from an optical reverberation mapping campaign executed in 2014, targeting the active galactic nuclei (AGN) MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. Our targets have diverse and interesting observational properties, including a changing look AGN and a broad-line radio galaxy. Based on continuum-H$beta$ lags, we measure black hole masses for all five targets. We also obtain H$gamma$ and He{sc ii},$lambda 4686$ lags for all objects except 3C 382. The He{sc ii},$lambda 4686$ lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines are also in qualitative agreement with photoionization models. These spectra have extremely high signal-to-noise ratios (100--300 per pixel) and there are excellent prospects for obtaining velocity-resolved reverberation signatures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا