Do you want to publish a course? Click here

A Multimessenger Picture of the Flaring Blazar TXS 0506+056: implications for High-Energy Neutrino Emission and Cosmic Ray Acceleration

96   0   0.0 ( 0 )
 Added by Azadeh Keivani
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Detection of the IceCube-170922A neutrino coincident with the flaring blazar TXS 0506+056, the first and only 3-sigma high-energy neutrino source association to date, offers a potential breakthrough in our understanding of high-energy cosmic particles and blazar physics. We present a comprehensive analysis of TXS 0506+056 during its flaring state, using newly collected Swift, NuSTAR, and X-shooter data with Fermi observations and numerical models to constrain the blazars particle acceleration processes and multimessenger (electromagnetic and high-energy neutrino) emissions. Accounting properly for electromagnetic cascades in the emission region, we find a physically-consistent picture only within a hybrid leptonic scenario, with gamma-rays produced by external inverse-Compton processes and high-energy neutrinos via a radiatively-subdominant hadronic component. We derive robust constraints on the blazars neutrino and cosmic-ray emissions and demonstrate that, because of cascade effects, the 0.1-100keV emissions of TXS 0506+056 serve as a better probe of its hadronic acceleration and high-energy neutrino production processes than its GeV-TeV emissions. If the IceCube neutrino association holds, physical conditions in the TXS 0506+056 jet must be close to optimal for high-energy neutrino production, and are not favorable for ultra-high-energy cosmic-ray acceleration. Alternatively, the challenges we identify in generating a significant rate of IceCube neutrino detections from TXS 0506+056 may disfavor single-zone models. In concert with continued operations of the high-energy neutrino observatories, we advocate regular X-ray monitoring of TXS 0506+056 and other blazars in order to test single-zone blazar emission models, clarify the nature and extent of their hadronic acceleration processes, and carry out the most sensitive possible search for additional multimessenger sources.



rate research

Read More

71 - S. Ansoldi 2018
A neutrino with energy of $sim$290 TeV, IceCube-170922A, was detected in coincidence with the BL Lac object TXS~0506+056 during enhanced gamma-ray activity, with chance coincidence being rejected at $sim 3sigma$ level. We monitored the object in the very-high-energy (VHE) band with the MAGIC telescopes for $sim$41 hours from 1.3 to 40.4 days after the neutrino detection. Day-timescale variability is clearly resolved. We interpret the quasi-simultaneous neutrino and broadband electromagnetic observations with a novel one-zone lepto-hadronic model, based on interactions of electrons and protons co-accelerated in the jet with external photons originating from a slow-moving plasma sheath surrounding the faster jet spine. We can reproduce the multiwavelength spectra of TXS 0506+056 with neutrino rate and energy compatible with IceCube-170922A, and with plausible values for the jet power of $sim 10^{45} - 4 times 10^{46} {rm erg s^{-1}}$. The steep spectrum observed by MAGIC is concordant with internal $gammagamma$ absorption above a few tens of GeV entailed by photohadronic production of a $sim$290 TeV neutrino, corroborating a genuine connection between the multi-messenger signals. In contrast to previous predictions of predominantly hadronic emission from neutrino sources, the gamma-rays can be mostly ascribed to inverse Compton up-scattering of external photons by accelerated electrons. The X-ray and VHE bands provide crucial constraints on the emission from both accelerated electrons and protons. We infer that the maximum energy of protons in the jet co-moving frame can be in the range $sim 10^{14}$ to $10^{18}$ eV.
The IceCube collaboration reported a $sim 3.5sigma$ excess of $13pm5$ neutrino events in the direction of the blazar TXS 0506+56 during a $sim$6 month period in 2014-2015, as well as the ($sim3sigma$) detection of a high-energy muon neutrino during an electromagnetic flare in 2017. We explore the possibility that the 2014-2015 neutrino excess and the 2017 multi-messenger flare are both explained in a common physical framework that relies on the emergence of a relativistic neutral beam in the blazar jet due to interactions of accelerated cosmic rays (CRs) with photons. We demonstrate that the neutral beam model provides an explanation for the 2014-2015 neutrino excess without violating X-ray and $gamma$-ray constraints, and also yields results consistent with the detection of one high-energy neutrino during the 2017 flare. If both neutrino associations with TXS 05065+056 are real, our model requires that (i) the composition of accelerated CRs is light, with a ratio of helium nuclei to protons $gtrsim5$, (ii) a luminous external photon field ($sim 10^{46}$ erg s$^{-1}$) variable (on year-long timescales) is present, and (iii) the CR injection luminosity as well as the properties of the dissipation region (i.e., Lorentz factor, magnetic field, and size) vary on year-long timescales.
Motivated by the observation of a $>290$ TeV muon neutrino by IceCube, coincident with a $sim$6 month-long $gamma$-ray flare of the blazar TXS 0506+056, and an archival search which revealed $13 pm 5$ further, lower-energy neutrinos in the direction of the source in 2014-2015, we discuss the likely contribution of blazars to the diffuse high-energy neutrino intensity, the implications for neutrino emission from TXS 0506+056 based on multi-wavelength observations of the source, and a multi-zone model that allows for sufficient neutrino emission so as to reconcile the multi-wavelength cascade constraints with the neutrino emission seen by IceCube in the direction of TXS 0506+056.
The IceCube report of a $sim 3.5sigma$ excess of $13pm5$ neutrino events in the direction of the blazar TXS 05056+056 in 2014-2015 and the 2017 detection of a high-energy neutrino, IceCube-170922A, during a gamma-ray flare from the same blazar, have revived the interest in scenarios for neutrino production in blazars. We perform comprehensive analyses on the long-term electromagnetic emission of TXS 05056+056 using optical, X-ray, and gamma-ray data from the All-Sky Automated Survey for Supernovae (ASAS-SN), the Neil Gehrels Swift Observatory (Swift), the Monitor of All-sky X-ray Image (MAXI), and the Fermi Large Area Telescope (Fermi-LAT). We also perform numerical modeling of the spectral energy distributions (SEDs) in four epochs prior to 2017 with contemporaneous gamma-ray and lower energy (optical and/or X-ray) data. We find that the multi-epoch SEDs are consistent with a hybrid leptonic scenario, where the gamma-rays are produced in the blazar zone via external inverse Compton scattering of accelerated electrons, and high-energy neutrinos are produced via the photomeson production process of co-accelerated protons. The multi-epoch SEDs can be satisfactorily explained with the same jet parameters and variable external photon density and electron luminosity. Using the maximal neutrino flux derived for each epoch, we put an upper limit of $sim0.4-2$ on the muon neutrino number in ten years of IceCube observations. Our results are consistent with the IceCube-170922A detection, which can be explained as an upper fluctuation from the average neutrino rate expected from the source, but in strong tension with the 2014-2015 neutrino flare.
A high-energy muon neutrino event, IceCube-170922A, was recently discovered in both spatial and temporal coincidence with a gamma-ray flare of the blazar TXS 0506+056. It has been shown, with standard one-zone models, that neutrinos can be produced in the blazar jet via hadronic interactions, but with a flux which is mostly limited by the X-ray data. In this work, we explore the neutrino production from TXS 0506+056 by invoking two physically distinct emission zones in the jet, separated by the broad line region (BLR). Using the Doppler-boosted radiation of the BLR as the target photon field, the inner zone accounts for the neutrino and gamma-ray emission via $pgamma$ interactions and inverse Compton scattering respectively, while the outer zone produces the optical and X-ray emission via synchrotron and synchrotron self-Compton processes. The different conditions of the two zones allow us to suppress the X-ray emission from the electromagnetic cascade, and set a much higher upper limit on the muon neutrino flux (i.e., $sim 10^{-11}rm erg~cm^{-2}s^{-1}$) than in one-zone models. We compare, in detail, our scenario with one-zone models discussed in the literature, and argue that differentiating between such scenarios will become possible with next generation neutrino telescopes, such as IceCube-Gen2.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا