Do you want to publish a course? Click here

On the improvement of the Hardy inequality due to singular magnetic fields

126   0   0.0 ( 0 )
 Added by David Krejcirik
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We establish magnetic improvements upon the classical Hardy inequality for two specific choices of singular magnetic fields. First, we consider the Aharonov-Bohm field in all dimensions and establish a sharp Hardy-type inequality that takes into account both the dimensional as well as the magnetic flux contributions. Second, in the three-dimensional Euclidean space, we derive a non-trivial magnetic Hardy inequality for a magnetic field that vanishes at infinity and diverges along a plane.



rate research

Read More

We study the quadratic form associated to the kinetic energy operator in the presence of an external magnetic field in d = 3. We show that if the radial component of the magnetic field does not vanish identically, then the classical lower bound given by Hardy is improved by a non-negative potential term depending on properties of the magnetic field.
In the presence of the homogeneous electric field ${bf E}$ and the homogeneous perpendicular magnetic field ${bf B}$, the classical trajectory of a quantum particle on ${mathbb R}^2$ moves with drift velocity $alpha$ which is perpendicular to the electric and magnetic fields. For such Hamiltonians the absence of the embedded eigenvalues of perturbed Hamiltonian has been conjectured. In this paper one proves this conjecture for the perturbations $V(x, y)$ which have sufficiently small support in direction of drift velocity.
We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furthermore prove a lower bound for the first magnetic Neumann eigenvalue in the case of constant field.
Let $Sigmasubsetmathbb{R}^d$ be a $C^infty$-smooth closed compact hypersurface, which splits the Euclidean space $mathbb{R}^d$ into two domains $Omega_pm$. In this note self-adjoint Schrodinger operators with $delta$ and $delta$-interactions supported on $Sigma$ are studied. For large enough $minmathbb{N}$ the difference of $m$th powers of resolvents of such a Schrodinger operator and the free Laplacian is known to belong to the trace class. We prove trace formulae, in which the trace of the resolvent power difference in $L^2(mathbb{R}^d)$ is written in terms of Neumann-to-Dirichlet maps on the boundary space $L^2(Sigma)$.
We give a short proof of a recently established Hardy-type inequality due to Keller, Pinchover, and Pogorzelski together with its optimality. Moreover, we identify the remainder term which makes it into an identity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا