On reproducing kernels, and analysis of measures


Abstract in English

Starting with the correspondence between positive definite kernels on the one hand and reproducing kernel Hilbert spaces (RKHSs) on the other, we turn to a detailed analysis of associated measures and Gaussian processes. Point of departure: Every positive definite kernel is also the covariance kernel of a Gaussian process. Given a fixed sigma-finite measure $mu$, we consider positive definite kernels defined on the subset of the sigma algebra having finite $mu$ measure. We show that then the corresponding Hilbert factorizations consist of signed measures, finitely additive, but not automatically sigma-additive. We give a necessary and sufficient condition for when the measures in the RKHS, and the Hilbert factorizations, are sigma-additive. Our emphasis is the case when $mu$ is assumed non-atomic. By contrast, when $mu$ is known to be atomic, our setting is shown to generalize that of Shannon-interpolation. Our RKHS-approach further leads to new insight into the associated Gaussian processes, their It^{o} calculus and diffusion. Examples include fractional Brownian motion, and time-change processes.

Download