No Arabic abstract
We consider a hyperbolic Dirac-type operator with growing potential on a a spatially non-compact globally hyperbolic manifold. We show that the Atiyah-Patodi-Singer boundary value problem for such operator is Fredholm and obtain a formula for this index in terms of the local integrals and the relative eta-invariant introduced by Braverman and Shi. This extends recent results of Bar and Strohmaier, who studied the index of a hyperbolic Dirac operator on a spatially compact globally hyperbolic manifold.
We consider a complete Riemannian manifold M whose boundary is a disjoint union of finitely many complete connected Riemannian manifolds. We compute the index of a local boundary value problem for a strongly Callias-type operator on M. Our result extends an index theorem of D. Freed to non-compact manifolds, thus providing a new insight on the Horava-Witten anomaly.
We study the index of the APS boundary value problem for a strongly Callias-type operator D on a complete Riemannian manifold $M$. We show that this index is equal to an index on a simpler manifold whose boundary is a disjoint union of two complete manifolds $N_0$ and $N_1$. If the dimension of $M$ is odd we show that the latter index depends only on the restrictions $A_0$ and $A_1$ of $D$ to $N_0$ and $N_1$ and thus is an invariant of the boundary. We use this invariant to define the relative eta-invariant $eta(A_1,A_0)$. We show that even though in our situation the eta-invariants of $A_1$ and $A_0$ are not defined, the relative eta-invariant behaves as if it was the difference $eta(A_1)-eta(A_0)$.
We compute the index of a Callias-type operator with APS boundary condition on a manifold with compact boundary in terms of combination of indexes of induced operators on a compact hypersurface. Our result generalizes the classical Callias-type index theorem to manifolds with compact boundary.
We study the index of the APS boundary value problem for a strongly Callias-type operator $D$ on a complete even dimensional Riemannian manifold $M$ (the odd dimensional case was considered in our previous paper arXiv:1706.06737). We use this index to define the relative $eta$-invariant $eta(A_1,A_0)$ of two strongly Callias-type operators, which are equal outside of a compact set. Even though in our situation the $eta$-invariants of $A_1$ and $A_0$ are not defined, the relative $eta$-invariant behaves as if it were the difference $eta(A_1)-eta(A_0)$. We also define the spectral flow of a family of such operators and use it compute the variation of the relative $eta$-invariant.
We introduce a notion of cobordism of Callias-type operators over complete Riemannian manifolds and prove that the index is preserved by such a cobordism. As an application we prove a gluing formula for Callias-type index. In particular, a usual index of an elliptic operator on a compact manifold can be computed as a sum of indexes of Callias-type operators on two non-compact, but topologically simpler manifolds. As another application we give a new proof of the relative index theorem for Callias-type operators, which also leads to a new proof of the Callias index theorem.