Spectrally Resolved Mid-Infrared Molecular Emission from Protoplanetary Disks and the Chemical Fingerprint of Planetesimal Formation


Abstract in English

We present high resolution spectroscopy of mid-infrared molecular emission from two very active T Tauri stars, AS 205 N and DR Tau. In addition to measuring high signal-to-noise line profiles of water, we report the first spectrally resolved mid-infrared line profiles of HCN emission from protoplanetary disks. The similar line profiles and temperatures of the HCN and water emission indicate that they arise in the same volume of the disk atmosphere, within 1-2AU of the star. The results support the earlier suggestion that the observed trend of increasing HCN/water emission with disk mass is a chemical fingerprint of planetesimal formation and core accretion in action. In addition to directly constraining the emitting radii of the molecules, the high resolution spectra also help to break degeneracies between temperature and column density in deriving molecular abundances from low resolution mid-infrared spectra. As a result, they can improve our understanding of the extent to which inner disks are chemically active. Contrary to predictions from HCN excitation studies carried out for AS 205 N, the mid-infrared and near-infrared line profiles of HCN are remarkably similar. The discrepancy may indicate that HCN is not abundant beyond a couple of AU or that infrared pumping of HCN does not dominate at these distances.

Download