Engineering Phonon Polaritons in van der Waals Heterostructures to Enhance In-Plane Optical Anisotropy


Abstract in English

Van der Waals heterostructures assembled from layers of 2D materials have attracted considerable interest due to their novel optical and electrical properties. Here we report a scattering-type scanning near field optical microscopy study of hexagonal boron nitride on black phosphorous (h-BN/BP) heterostructures, demonstrating the first direct observation of in-plane anisotropic phonon polariton modes in vdW heterostructures. Strikingly, the measured in-plane optical anisotropy along armchair and zigzag crystal axes exceeds the ratio of refractive indices of BP in the x-y plane. We explain that this enhancement is due to the high confinement of the phonon polaritons in h-BN. We observe a maximum in-plane optical anisotropy of {alpha}_max=1.25 in the 1405-1440 cm-1 frequency spectrum. These results provide new insights on the behavior of polaritons in vdW heterostructures, and the observed anisotropy enhancement paves the way to novel nanophotonic devices and to a new way to characterize optical anisotropy in thin films.

Download