No Arabic abstract
Jets from boosted heavy particles have a typical angular scale which can be used to distinguish them from QCD jets. We introduce a machine learning strategy for jet substructure analysis using a spectral function on the angular scale. The angular spectrum allows us to scan energy deposits over the angle between a pair of particles in a highly visual way. We set up an artificial neural network (ANN) to find out characteristic shapes of the spectra of the jets from heavy particle decays. By taking the Higgs jets and QCD jets as examples, we show that the ANN of the angular spectrum input has similar performance to existing taggers. In addition, some improvement is seen when additional extra radiations occur. Notably, the new algorithm automatically combines the information of the multi-point correlations in the jet.
By representing each collider event as a point cloud, we adopt the Graphic Convolutional Network (GCN) with focal loss to reconstruct the Higgs jet in it. This method provides higher Higgs tagging efficiency and better reconstruction accuracy than the traditional methods which use jet substructure information. The GCN, which is trained on events of the $H$+jets process, is capable of detecting a Higgs jet in events of several different processes, even though the performance degrades when there are boosted heavy particles other than the Higgs in the event. We also demonstrate the signal and background discrimination capacity of the GCN by applying it to the $tbar{t}$ process. Taking the outputs of the network as new features to complement the traditional jet substructure variables, the $tbar{t}$ events can be separated further from the $H$+jets events.
In this work, we present a new technique to measure the longitudinal and transverse polarization fractions of hadronic decays of boosted $W$ bosons. We introduce a new jet substructure observable denoted as $p_theta$, which is a proxy for the parton level decay polar angle of the $W$ boson in its rest-frame. We show that the distribution of this observable is sensitive to the polarization of $W$ bosons and can therefore be used to reconstruct the $W$ polarization in a model-independent way. As a test case, we study the efficacy of our technique on vector boson scattering processes at the high luminosity Large Hadron Collider and we find that our technique can determine the longitudinal polarization fraction to within $pm 0.15$. We also show that our technique can be used to identify the parity of beyond Standard Model scalar or pseudo-scalar resonances decaying to $W$ bosons with just 20 events.
Top polarization is an important probe of new physics that couples to the top sector, and which may be discovered at the 14 TeV LHC. Taking the example of the MSSM, we argue that top polarization measurements can put a constraint on the soft supersymmetry breaking parameter A_t. In light of the recent discovery of a Higgs-like boson of mass ~125 GeV, a large A_t is a prediction of many supersymmetric models. To this end, we develop a *detector level* analysis methodology for extracting polarization information from hadronic tops using boosted jet substructure. We show that with 100 fb^(-1) of data, left and right 600 GeV stops can be distinguished to 4sigma, and 800 GeV stops can be distinguished to 3sigma.
This report of the BOOST2012 workshop presents the results of four working groups that studied key aspects of jet substructure. We discuss the potential of the description of jet substructure in first-principle QCD calculations and study the accuracy of state-of-the-art Monte Carlo tools. Experimental limitations of the ability to resolve substructure are evaluated, with a focus on the impact of additional proton proton collisions on jet substructure performance in future LHC operating scenarios. A final section summarizes the lessons learnt during the deployment of substructure analyses in searches for new physics in the production of boosted top quarks.
We present an investigation of the dependence of searches for boosted Higgs bosons using jet substructure on the perturbative and non-perturbative parameters of the Herwig++ Monte Carlo event generator. Values are presented for a new tune of the parameters of the event generator, together with the an estimate of the uncertainties based on varying the parameters around the best-fit values.