As a continuation of the paper [20] on standard $f$-divergences, we make a systematic study of maximal $f$-divergences in general von Neumann algebras. For maximal $f$-divergences, apart from their definition based on Haagerups $L^1$-space, we present the general integral expression and the variational expression in terms of reverse tests. From these definition and expressions we prove important properties of maximal $f$-divergences, for instance, the monotonicity inequality, the joint convexity, the lower semicontinuity, and the martingale convergence. The inequality between the standard and the maximal $f$-divergences is also given.