Do you want to publish a course? Click here

The Location and Environments of Neutron Star Mergers in an Evolving Universe

58   0   0.0 ( 0 )
 Added by Chris L. Fryer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The simultaneous detection of gravitational and electromagnetic waves from a binary neutron star merger has both solidified the link between neutron star mergers and short-duration gamma-ray bursts (GRBs) and demonstrated the ability of astronomers to follow-up the gravitational wave detection to place constraints on the ejecta from these mergers as well as the nature of the GRB engine and its surroundings. As the sensitivity of aLIGO and VIRGO increases, it is likely that a growing number of such detections will occur in the next few years, leading to a sufficiently-large number of events to constrain the populations of these GRB events. While long-duration GRBs originate from massive stars and thus are located near their stellar nurseries, binary neutron stars may merge on much longer timescales, and thus may have had time to migrate appreciably. The strength and character of the electromagnetic afterglow emission of binary neutron star mergers is a sensitive function of the circum-merger environment. Though the explosion sites of short GRBs have been explored in the literature, the question has yet to be fully addressed in its cosmological context. We present cosmological simulations following the evolution of a galaxy cluster including star formation combined with binary population synthesis models to self-consistently track the locations and environmental gas densities of compact binary merger sites throughout the cosmic web. We present probability distributions for densities as a function of redshift and discuss model sensitivity to population synthesis model assumptions.

rate research

Read More

Finite size effects in a neutron star merger are manifested, at leading order, through the tidal deformabilities (Lambdas) of the stars. If strong first-order phase transitions do not exist within neutron stars, both neutron stars are described by the same equation of state, and their Lambdas are highly correlated through their masses even if the equation of state is unknown. If, however, a strong phase transition exists between the central densities of the two stars, so that the more massive star has a phase transition and the least massive star does not, this correlation will be weakened. In all cases, a minimum Lambda for each neutron star mass is imposed by causality, and a less conservative limit is imposed by the unitary gas constraint, both of which we compute. In order to make the best use of gravitational wave data from mergers, it is important to include the correlations relating the Lambdas and the masses as well as lower limits to the Lambdas as a function of mass. Focusing on the case without strong phase transitions, and for mergers where the chirp mass M_chirp<1.4M_sun, which is the case for all observed double neutron star systems where a total mass has been accurately measured, we show that the dimensionless Lambdas satisfy Lambda_1/Lambda_2= q^6, where q=M_2/M_1 is the binary mass ratio; $M$ is mass of each star, respectively. Moreover, they are bounded by q^{n_-}>Lambda_1/Lambda_2> q^{n_{0+}+qn_{1+}}, where n_-<n_{0+}+qn_{1+}; the parameters depend only on M_chirp, which is accurately determined from the gravitational-wave signal. We also provide analytic expressions for the wider bounds that exist in the case of a strong phase transition. We argue that bounded ranges for Lambda_1/Lambda_2, tuned to M_chirp, together with lower bounds to Lambda(M), will be more useful in gravitational waveform modeling than other suggested approaches.
We describe an unambiguous gravitational-wave signature to identify the occurrence of a strong phase transition from hadronic matter to deconfined quark matter in neutron star mergers. Such a phase transition leads to a strong softening of the equation of state and hence to more compact merger remnants compared to purely hadronic models. If a phase transition takes place during merging, this results in a characteristic increase of the dominant postmerger gravitational-wave frequency relative to the tidal deformability characterizing the inspiral phase. By comparing results from different purely hadronic and hybrid models we show that a strong phase transition can be identified from a single, simultaneous measurement of pre- and postmerger gravitational waves. Furthermore, we present new results for hybrid star mergers, which contain quark matter already during the inspiral stage. Also for these systems we find that the postmerger GW frequency is increased compared to purely hadronic models. We thus conclude that also hybrid star mergers with an onset of the hadron-quark phase transition at relatively low densities may lead to the very same characteristic signature of quark deconfinement in the postmerger GW signal as systems undergoing the phase transition during merging.
We report here the non-detection of gravitational waves from the merger of binary neutron star systems and neutron-star--black-hole systems during the first observing run of Advanced LIGO. In particular we searched for gravitational wave signals from binary neutron star systems with component masses $in [1,3] M_{odot}$ and component dimensionless spins $< 0.05$. We also searched for neutron-star--black-hole systems with the same neutron star parameters, black hole mass $in [2,99] M_{odot}$ and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems, and find that they could have detected the merger of binary neutron star systems with component mass distributions of $1.35pm0.13 M_{odot}$ at a volume-weighted average distance of $sim$ 70Mpc, and for neutron-star--black-hole systems with neutron star masses of $1.4M_odot$ and black hole masses of at least $5M_odot$, a volume-weighted average distance of at least $sim$ 110Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc$^{-3}$yr$^{-1}$ for binary-neutron star systems and less than 3,600 Gpc$^{-3}$yr$^{-1}$ for neutron-star--black-hole systems. We find that if no detection of neutron-star binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of $10^{+20}_{-7}$Gpc$^{-3}$yr$^{-1}$ short gamma ray bursts beamed towards the Earth and assuming that all short gamma-ray bursts have binary-neutron-star (neutron-star--black-hole) progenitors we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than ${2.3^{+1.7}_{-1.1}}^{circ}$ (${4.3^{+3.1}_{-1.9}}^{circ}$).
187 - Tomonori Totani 2013
Fast radio bursts (FRBs) at cosmological distances have recently been discovered, whose duration is about milliseconds. We argue that the observed short duration is difficult to explain by giant flares of soft gamma-ray repeaters, though their event rate and energetics are consistent with FRBs. Here we discuss binary neutron star (NS-NS) mergers as a possible origin of FRBs. The FRB rate is within the plausible range of NS-NS merger rate and its cosmological evolution, while a large fraction of NS-NS mergers must produce observable FRBs. A likely radiation mechanism is coherent radio emission like radio pulsars, by magnetic braking when magnetic fields of neutron stars are synchronized to binary rotation at the time of coalescence. Magnetic fields of the standard strength (~ 10^{12-13} G) can explain the observed FRB fluxes, if the conversion efficiency from magnetic braking energy loss to radio emission is similar to that of isolated radio pulsars. Corresponding gamma-ray emission is difficult to detect by current or past gamma-ray burst satellites. Since FRBs tell us the exact time of mergers, a correlated search would significantly improve the effective sensitivity of gravitational wave detectors.
The gravitational-wave (GW) events, produced by the coalescence of binary neutron-stars (BNS), can be treated as the standard sirens to probe the expansion history of the Universe, if their redshifts could be determined from the electromagnetic observations. For the high-redshift ($zgtrsim 0.1$) events, the short $gamma$-ray bursts (sGRBs) and the afterglows are always considered as the primary electromagnetic counterparts. In this paper, by investigating various models of sGRBs and afterglows, we discuss the rates and distributions of BNS mergers multi-messenger observations with GW detectors in second-generation (2G), 2.5G, 3G era with the detectable sGRBs and the afterglows. For instance, for Cosmic Explorer GW detector, the rate is about (300-3500) per year with GECAM-like detector for $gamma$-ray emissions and LSST/WFST detector for optical afterglows. In addition, we find these events have the redshifts $zlesssim 2$ and the inclination angles $iotalesssim 20^{circ}$. These results justify the rough estimation in previous works. Considering these events as standard sirens to constrain the equation-of-state parameters of dark energy $w_{0}$ and $w_{a}$, we obtain the potential constraints of $Delta w_{0}simeq 0.02-0.05$ and $Delta w_{a}simeq 0.1-0.4$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا