No Arabic abstract
We propose a fast and near-optimal approach to joint channel-estimation, equalization, and decoding of coded single-carrier (SC) transmissions over frequency-selective channels with few-bit analog-to-digital converters (ADCs). Our approach leverages parametric bilinear generalized approximate message passing (PBiGAMP) to reduce the implementation complexity of joint channel estimation and (soft) symbol decoding to that of a few fast Fourier transforms (FFTs). Furthermore, it learns and exploits sparsity in the channel impulse response. Our work is motivated by millimeter-wave systems with bandwidths on the order of Gsamples/sec, where few-bit ADCs, SC transmissions, and fast processing all lead to significant reductions in power consumption and implementation cost. We numerically demonstrate our approach using signals and channels generated according to the IEEE 802.11ad wireless local area network (LAN) standard, in the case that the receiver uses analog beamforming and a single ADC.
We consider the problem of channel estimation for uplink multiuser massive MIMO systems, where, in order to significantly reduce the hardware cost and power consumption, one-bit analog-to-digital converters (ADCs) are used at the base station (BS) to quantize the received signal. Channel estimation for one-bit massive MIMO systems is challenging due to the severe distortion caused by the coarse quantization. It was shown in previous studies that an extremely long training sequence is required to attain an acceptable performance. In this paper, we study the problem of optimal one-bit quantization design for channel estimation in one-bit massive MIMO systems. Our analysis reveals that, if the quantization thresholds are optimally devised, using one-bit ADCs can achieve an estimation error close to (with an increase by a factor of $pi/2$) that of an ideal estimator which has access to the unquantized data. The optimal quantization thresholds, however, are dependent on the unknown channel parameters. To cope with this difficulty, we propose an adaptive quantization (AQ) approach in which the thresholds are adaptively adjusted in a way such that the thresholds converge to the optimal thresholds, and a random quantization (RQ) scheme which randomly generate a set of nonidentical thresholds based on some statistical prior knowledge of the channel. Simulation results show that, our proposed AQ and RQ schemes, owing to their wisely devised thresholds, present a significant performance improvement over the conventional fixed quantization scheme that uses a fixed (typically zero) threshold, and meanwhile achieve a substantial training overhead reduction for channel estimation. In particular, even with a moderate number of pilot symbols (about 5 times the number of users), the AQ scheme can provide an achievable rate close to that of the perfect channel state information (CSI) case.
We study a noncoherent multiple-input multiple-output (MIMO) fading multiple-access channel (MAC), where the transmitters and the receiver are aware of the statistics of the fading, but not of its realisation. We analyse the rate region that is achievable with nearest neighbour decoding and pilot-assisted channel estimation and determine the corresponding pre-log region, which is defined as the limiting ratio of the rate region to the logarithm of the SNR as the SNR tends to infinity.
We study the information rates of non-coherent, stationary, Gaussian, multiple-input multiple-output (MIMO) flat-fading channels that are achievable with nearest neighbour decoding and pilot-aided channel estimation. In particular, we analyse the behaviour of these achievable rates in the limit as the signal-to-noise ratio (SNR) tends to infinity. We demonstrate that nearest neighbour decoding and pilot-aided channel estimation achieves the capacity pre-log - which is defined as the limiting ratio of the capacity to the logarithm of SNR as the SNR tends to infinity - of non-coherent multiple-input single-output (MISO) flat-fading channels, and it achieves the best so far known lower bound on the capacity pre-log of non-coherent MIMO flat-fading channels.
In massive multiple-input multiple-output (MIMO) systems, it may not be power efficient to have a high-resolution analog-to-digital converter (ADC) for each antenna element. In this paper, a near maximum likelihood (nML) detector for uplink multiuser massive MIMO systems is proposed where each antenna is connected to a pair of one-bit ADCs, i.e., one for each real and imaginary component of the baseband signal. The exhaustive search over all the possible transmitted vectors required in the original maximum likelihood (ML) detection problem is relaxed to formulate an ML estimation problem. Then, the ML estimation problem is converted into a convex optimization problem which can be efficiently solved. Using the solution, the base station can perform simple symbol-by-symbol detection for the transmitted signals from multiple users. To further improve detection performance, we also develop a two-stage nML detector that exploits the structures of both the original ML and the proposed (one-stage) nML detectors. Numerical results show that the proposed nML detectors are efficient enough to simultaneously support multiple uplink users adopting higher-order constellations, e.g., 16 quadrature amplitude modulation. Since our detectors exploit the channel state information as part of the detection, an ML channel estimation technique with one-bit ADCs that shares the same structure with our proposed nML detector is also developed. The proposed detectors and channel estimator provide a complete low power solution for the uplink of a massive MIMO system.
In this paper, we address the message-passing receiver design for the 3D massive MIMO-OFDM systems. With the aid of the central limit argument and Taylor-series approximation, a computationally efficient receiver that performs joint channel estimation and decoding is devised by the framework of expectation propagation. Specially, the local belief defined at the channel transition function is expanded up to the second order with Wirtinger calculus, to transform the messages sent by the channel transition function to a tractable form. As a result, the channel impulse response (CIR) between each pair of antennas is estimated by Gaussian message passing. In addition, a variational expectation-maximization (EM)-based method is derived to learn the channel power-delay-profile (PDP). The proposed joint algorithm is assessed in 3D massive MIMO systems with spatially correlated channels, and the empirical results corroborate its superiority in terms of performance and complexity.