V-CNN: When Convolutional Neural Network encounters Data Visualization


Abstract in English

In recent years, deep learning poses a deep technical revolution in almost every field and attracts great attentions from industry and academia. Especially, the convolutional neural network (CNN), one representative model of deep learning, achieves great successes in computer vision and natural language processing. However, simply or blindly applying CNN to the other fields results in lower training effects or makes it quite difficult to adjust the model parameters. In this poster, we propose a general methodology named V-CNN by introducing data visualizing for CNN. V-CNN introduces a data visualization model prior to CNN modeling to make sure the data after processing is fit for the features of images as well as CNN modeling. We apply V-CNN to the network intrusion detection problem based on a famous practical dataset: AWID. Simulation results confirm V-CNN significantly outperforms other studies and the recall rate of each invasion category is more than 99.8%.

Download