The weak Lefschetz property of equigenerated monomial ideals


Abstract in English

We determine a sharp lower bound for the Hilbert function in degree $d$ of a monomial algebra failing the weak Lefschetz property over a polynomial ring with $n$ variables and generated in degree $d$, for any $dgeq 2$ and $ngeq 3$. We consider artinian ideals in the polynomial ring with $n$ variables generated by homogeneous polynomials of degree $d$ invariant under an action of the cyclic group $mathbb{Z}/dmathbb{Z}$, for any $ngeq 3$ and any $dgeq 2$. We give a complete classification of such ideals in terms of the weak Lefschetz property depending on the action.

Download