Do you want to publish a course? Click here

Joint Neural Network Equalizer and Decoder

155   0   0.0 ( 0 )
 Added by Chuan Zhang
 Publication date 2018
and research's language is English
 Authors Weihong Xu




Ask ChatGPT about the research

Recently, deep learning methods have shown significant improvements in communication systems. In this paper, we study the equalization problem over the nonlinear channel using neural networks. The joint equalizer and decoder based on neural networks are proposed to realize blind equalization and decoding process without the knowledge of channel state information (CSI). Different from previous methods, we use two neural networks instead of one. First, convolutional neural network (CNN) is used to adaptively recover the transmitted signal from channel impairment and nonlinear distortions. Then the deep neural network decoder (NND) decodes the detected signal from CNN equalizer. Under various channel conditions, the experiment results demonstrate that the proposed CNN equalizer achieves better performance than other solutions based on machine learning methods. The proposed model reduces about $2/3$ of the parameters compared to state-of-the-art counterparts. Besides, our model can be easily applied to long sequence with $mathcal{O}(n)$ complexity.



rate research

Read More

Present-day communication systems routinely use codes that approach the channel capacity when coupled with a computationally efficient decoder. However, the decoder is typically designed for the Gaussian noise channel and is known to be sub-optimal for non-Gaussian noise distribution. Deep learning methods offer a new approach for designing decoders that can be trained and tailored for arbitrary channel statistics. We focus on Turbo codes and propose DeepTurbo, a novel deep learning based architecture for Turbo decoding. The standard Turbo decoder (Turbo) iteratively applies the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm with an interleaver in the middle. A neural architecture for Turbo decoding termed (NeuralBCJR), was proposed recently. There, the key idea is to create a module that imitates the BCJR algorithm using supervised learning, and to use the interleaver architecture along with this module, which is then fine-tuned using end-to-end training. However, knowledge of the BCJR algorithm is required to design such an architecture, which also constrains the resulting learned decoder. Here we remedy this requirement and propose a fully end-to-end trained neural decoder - Deep Turbo Decoder (DeepTurbo). With novel learnable decoder structure and training methodology, DeepTurbo reveals superior performance under both AWGN and non-AWGN settings as compared to the other two decoders - Turbo and NeuralBCJR. Furthermore, among all the three, DeepTurbo exhibits the lowest error floor.
500 - Ximing Xie , Fang Fang , 2020
The combination of non-orthogonal multiple access (NOMA) and intelligent reflecting surface (IRS) is an efficient solution to significantly enhance the energy efficiency of the wireless communication system. In this paper, we focus on a downlink multi-cluster NOMA network, where each cluster is supported by one IRS. We aim to minimize the transmit power by jointly optimizing the beamforming, the power allocation and the phase shift of each IRS. The formulated problem is non-convex and challenging to solve due to the coupled variables, i.e., the beamforming vector, the power allocation coefficient and the phase shift matrix. To address this non-convex problem, we propose an alternating optimization based algorithm. Specifically, we divide the primal problem into the two subproblems for beamforming optimization and phase shifting feasiblity, where the two subproblems are solved iteratively. Moreover, to guarantee the feasibility of the beamforming optimization problem, an iterative algorithm is proposed to search the feasible initial points. To reduce the complexity, we also propose a simplified algorithm based on partial exhaustive search for this system model. Simulation results demonstrate that the proposed alternating algorithm can yield a better performance gain than the partial exhaustive search algorithm, OMA-IRS, and NOMA with random IRS phase shift.
Linear Programming (LP) is an important decoding technique for binary linear codes. However, the advantages of LP decoding, such as low error floor and strong theoretical guarantee, etc., come at the cost of high computational complexity and poor performance at the low signal-to-noise ratio (SNR) region. In this letter, we adopt the penalty dual decomposition (PDD) framework and propose a PDD algorithm to address the fundamental polytope based maximum likelihood (ML) decoding problem. Furthermore, we propose to integrate machine learning techniques into the most time-consuming part of the PDD decoding algorithm, i.e., check polytope projection (CPP). Inspired by the fact that a multi-layer perception (MLP) can theoretically approximate any nonlinear mapping function, we present a specially designed neural CPP (NCPP) algorithm to decrease the decoding latency. Simulation results demonstrate the effectiveness of the proposed algorithms.
The demand for flexible broadband wireless services makes the pruning technique, including both shortening and puncturing, an indispensable component of error correcting codes. The analysis of the pruning process for structured lowdensity parity-check (LDPC) codes can be considerably simplified with their equivalent representations through base-matrices or protographs. In this letter, we evaluate the thresholds of the pruned base-matrices by using protograph based on extrinsic information transfer (PEXIT). We also provide an efficient method to optimize the pruning patterns, which can significantly improve the thresholds of both the full-length patterns and the sub-patterns. Numerical results show that the structured LDPC codes pruned by the improved patterns outperform those with the existing patterns.
136 - Kai Chen , Jing Yang , Xiaohu Ge 2019
The high energy consumption of massive multi-input multi-out (MIMO) system has become a prominent problem in the millimeter wave(mm-Wave) communication scenario. The hybrid precoding technology greatly reduces the number of radio frequency(RF) chains by handing over part of the coding work to the phase shifting network, which can effectively improve energy efficiency. However, conventional hybrid precoding algorithms based on mathematical means often suffer from performance loss and high computational complexity. In this paper, a novel BP-neural-network-enabled hybrid precoding algorithm is proposed, in which the full-digital zero-forcing(ZF) precoding is set as the training target. Considering that signals at the base station are complex, we choose the complex neural network that has a richer representational capacity. Besides, we present the activation function of the complex neural network and the gradient derivation of the back propagation process. Simulation results demonstrate that the performance of the proposed hybrid precoding algorithm can optimally approximate the ZF precoding.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا