No Arabic abstract
We report a quasi-differential upper limit on the extremely-high-energy (EHE) neutrino flux above $5times 10^{6}$ GeV based on an analysis of nine years of IceCube data. The astrophysical neutrino flux measured by IceCube extends to PeV energies, and it is a background flux when searching for an independent signal flux at higher energies, such as the cosmogenic neutrino signal. We have developed a new method to place robust limits on the EHE neutrino flux in the presence of an astrophysical background, whose spectrum has yet to be understood with high precision at PeV energies. A distinct event with a deposited energy above $10^{6}$ GeV was found in the new two-year sample, in addition to the one event previously found in the seven-year EHE neutrino search. These two events represent a neutrino flux that is incompatible with predictions for a cosmogenic neutrino flux and are considered to be an astrophysical background in the current study. The obtained limit is the most stringent to date in the energy range between $5 times 10^{6}$ and $5 times 10^{10}$ GeV. This result constrains neutrino models predicting a three-flavor neutrino flux of $E_ u^2phi_{ u_e+ u_mu+ u_tau}simeq2times 10^{-8} {rm GeV}/{rm cm}^2 sec {rm sr}$ at $10^9 {rm GeV}$. A significant part of the parameter-space for EHE neutrino production scenarios assuming a proton-dominated composition of ultra-high-energy cosmic rays is excluded.
We report on a search for extremely-high energy neutrinos with energies greater than $10^6$ GeV using the data taken with the IceCube detector at the South Pole. The data was collected between April 2008 and May 2009 with the half completed IceCube array. The absence of signal candidate events in the sample of 333.5 days of livetime significantly improves model independent limit from previous searches and allows to place a limit on the diffuse flux of cosmic neutrinos with an $E^{-2}$ spectrum in the energy range $2.0 times 10^{6}$ $-$ $6.3 times 10^{9}$ GeV to a level of $E^2 phi leq 3.6 times 10^{-8}$ ${rm GeV cm^{-2} sec^{-1}sr^{-1}}$.
The IceCube Neutrino Observatory has established the existence of a high-energy all-sky neutrino flux of astrophysical origin. This discovery was made using events interacting within a fiducial region of the detector surrounded by an active veto and with reconstructed energy above 60 TeV, commonly known as the high-energy starting event sample, or HESE. We revisit the analysis of the HESE sample with an additional 4.5 years of data, newer glacial ice models, and improved systematics treatment. This paper describes the sample in detail, reports on the latest astrophysical neutrino flux measurements, and presents a source search for astrophysical neutrinos. We give the compatibility of these observations with specific isotropic flux models proposed in the literature as well as generic power-law-like scenarios. Assuming $ u_e: u_mu: u_tau=1:1:1$, and an equal flux of neutrinos and antineutrinos, we find that the astrophysical neutrino spectrum is compatible with an unbroken power law, with a preferred spectral index of ${2.87}^{+0.20}_{-0.19}$ for the $68.3%$ confidence interval.
We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010 -- 2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated ($sim 90 %$) by electron and tau flavors. The flux, observed in the sensitive energy range from $16,mathrm{TeV}$ to $2.6,mathrm{PeV}$, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be $gamma=2.53pm0.07$ and a flux normalization for each neutrino flavor of $phi_{astro} = 1.66^{+0.25}_{-0.27}$ at $E_{0} = 100, mathrm{TeV}$, in agreement with IceCubes complementary muon neutrino results and with all-neutrino flavor fit results. In the measured energy range we reject spectral indices $gammaleq2.28$ at $ge3sigma$ significance level. Due to high neutrino energy resolution and low atmospheric neutrino backgrounds, this analysis provides the most detailed characterization of the neutrino flux at energies below $sim100,{rm{TeV}}$ compared to previous IceCube results. Results from fits assuming more complex neutrino flux models suggest a flux softening at high energies and a flux hardening at low energies (p-value $ge 0.06$). The sizable and smooth flux measured below $sim 100,{rm{TeV}}$ remains a puzzle. In order to not violate the isotropic diffuse gamma-ray background as measured by the Fermi-LAT, it suggests the existence of astrophysical neutrino sources characterized by dense environments which are opaque to gamma-rays.
A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV - PeV range at the level of $10^{-8}, mathrm{GeV}, mathrm{cm}^{-2}, mathrm{s}^{-1}, mathrm{sr}^{-1}$ per flavor and reject a purely atmospheric explanation for the combined 3-year data at $5.7 sigma$. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year dataset, with a livetime of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000 TeV event is the highest-energy neutrino interaction ever observed.
The IceCube experiment has recently reported the observation of 28 high-energy (> 30 TeV) neutrino events, separated into 21 showers and 7 muon tracks, consistent with an extraterrestrial origin. In this letter we compute the compatibility of such an observation with possible combinations of neutrino flavors with relative proportion (alpha_e:alpha_mu:alpha_tau). Although the 7:21 track-to-shower ratio is naively favored for the canonical (1:1:1) at Earth, this is not true once the atmospheric muon and neutrino backgrounds are properly accounted for. We find that, for an astrophysical neutrino E^(-2) energy spectrum, (1:1:1) at Earth is disfavored at 81% C.L. If this proportion does not change, 6 more years of data would be needed to exclude (1:1:1) at Earth at 3 sigma C.L. Indeed, with the recently-released 3-year data, that flavor composition is excluded at 92% C.L. The best-fit is obtained for (1:0:0) at Earth, which cannot be achieved from any flavor ratio at sources with averaged oscillations during propagation. If confirmed, this result would suggest either a misunderstanding of the expected background events, or a misidentification of tracks as showers, or even more compellingly, some exotic physics which deviates from the standard scenario.