Ground-state fidelity at first-order quantum transitions


Abstract in English

We analyze the scaling behavior of the fidelity, and the corresponding susceptibility, emerging in finite-size many-body systems whenever a given control parameter $lambda$ is varied across a quantum phase transition. For this purpose we consider a finite-size scaling (FSS) framework. Our working hypothesis is based on a scaling assumption of the fidelity in terms of the FSS variables associated to $lambda$ and to its variation $delta lambda$. This framework entails the FSS predictions for continuous transitions, and meanwhile enables to extend them to first-order transitions, where the FSS becomes qualitatively different. The latter is supported by analytical and numerical analyses of the quantum Ising chain along its first-order quantum transition line, driven by an external longitudinal field.

Download