Quantum properties of topological Yang-Mills theory in (anti-)self-dual Landau gauge were recently investigated by the authors. We extend the analysis of renormalizability for two generalized classes of gauges; each of them depending on one gauge parameter. The (anti-)self-dual Landau gauge is recovered at the vanishing of each gauge parameter. The theory shows itself to be renormalizable in these classes of gauges. Moreover, we discuss the ambiguity on the choice of the renormalization factors (which is not present in usual Yang-Mills theories) and argue a possible origin of such ambiguity.
We show how to consistently renormalize $mathcal{N} = 1$ and $mathcal{N} = 2$ super-Yang-Mills theories in flat space with a local (i.e. space-time-dependent) renormalization scale in a holomorphic scheme. The action gets enhanced by a term proportional to derivatives of the holomorphic coupling. In the $mathcal{N} = 2$ case, this new action is exact at all orders in perturbation theory.
Massive renormalizable Yang-Mills theories in three dimensions are analysed within the algebraic renormalization in the Landau gauge. In analogy with the four dimensional case, the renormalization of the mass operator A^2 turns out to be expressed in terms of the fields and coupling constant renormalization factors. We verify the relation we obtain for the operator anomalous dimension by explicit calculations in the large N_f. The generalization to other gauges such as the nonlinear Curci-Ferrari gauge is briefly outlined.
We consider the partition function and correlation functions in the bosonic and supersymmetric Yang-Mills matrix models with compact semi-simple gauge group. In the supersymmetric case, we show that the partition function converges when $D=4,6$ and 10, and that correlation functions of degree $k< k_c=2(D-3)$ are convergent independently of the group. In the bosonic case we show that the partition function is convergent when $D geq D_c$, and that correlation functions of degree $k < k_c$ are convergent, and calculate $D_c$ and $k_c$ for each group, thus extending our previous results for SU(N). As a special case these results establish that the partition function and a set of correlation functions in the IKKT IIB string matrix model are convergent.
Various gauge invariant but non-Yang-Mills dynamical models are discussed: Precis of Chern-Simons theory in (2+1)-dimensions and reduction to (1+1)-dimensional B-F theories; gauge theories for (1+1)-dimensional gravity-matter interactions; parity and gauge invariant mass term in (2+1)-dimensions.
We study the Gribov problem in four-dimensional topological Yang-Mills theories following the Baulieu-Singer approach in the (anti-)self-dual Landau gauges. This is a gauge-fixed approach that allows to recover the topological spectrum, as first constructed by Witten, by means of an equivariant (or constrained) BRST cohomology. As standard gauge-fixed Yang-Mills theories suffer from the gauge copy (Gribov) ambiguity, one might wonder if and how this has repercussions for this analysis. The resolution of the small (infinitesimal) gauge copies, in general, affects the dynamics of the underlying theory. In particular, treating the Gribov problem for the standard Landau gauge condition in non-topological Yang-Mills theories strongly affects the dynamics of the theory in the infrared. In the current paper, although the theory is investigated with the same gauge condition, the effects of the copies turn out to be completely different. In other words: in both cases, the copies are there, but the effects are very different. As suggested by the tree-level exactness of the topological model in this gauge choice, the Gribov copies are shown to be inoffensive at the quantum level. To be more precise, following Gribov, we discuss the path integral restriction to the Gribov horizon. The associated gap equation, which fixes the so-called Gribov parameter, is however shown to only possess a trivial solution, making the restriction obsolete. We relate this to the absence of radiative corrections in both gauge and ghost sectors. We give further evidence by employing the renormalization group which shows that, for this kind of topological model, the gap equation indeed forbids the introduction of a massive Gribov parameter.
O. C. Junqueira
,A. D. Pereira
,G. Sadovski
.
(2018)
.
"More about the renormalization properties of topological Yang-Mills theories"
.
Rodrigo Ferreira Sobreiro
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا