No Arabic abstract
In the literature, there have been several methods and definitions for working out if two theories are equivalent (essentially the same) or not. In this article, we do something subtler. We provide means to measure distances (and explore connections) between formal theories. We introduce two main notions for such distances. The first one is that of textit{axiomatic distance}, but we argue that it might be of limited interest. The more interesting and widely applicable notion is that of textit{conceptual distance} which measures the minimum number of concepts that distinguish two theories. For instance, we use conceptual distance to show that relativistic and classical kinematics are distinguished by one concept only. We also develop further notions of distance, and we include a number of suggestions for applying and extending our project.
The concept of paradeduction is presented in order to justify that we can overlook contradictory information taking into account only what is consistent. Besides that, paradeduction is used to show that there is a way to transform any logic, introduced as an axiomatic formal system, into a paraconsistent one.
The development of compositional distributional models of semantics reconciling the empirical aspects of distributional semantics with the compositional aspects of formal semantics is a popular topic in the contemporary literature. This paper seeks to bring this reconciliation one step further by showing how the mathematical constructs commonly used in compositional distributional models, such as tensors and matrices, can be used to simulate different aspects of predicate logic. This paper discusses how the canonical isomorphism between tensors and multilinear maps can be exploited to simulate a full-blown quantifier-free predicate calculus using tensors. It provides tensor interpretations of the set of logical connectives required to model propositional calculi. It suggests a variant of these tensor calculi capable of modelling quantifiers, using few non-linear operations. It finally discusses the relation between these variants, and how this relation should constitute the subject of future work.
We characterize nonforking (Morley) sequences in dependent theories in terms of a generalization of Poizats special sequences and show that average types of Morley sequences are stationary over their domains. We characterize generically stable types in terms of the structure of the eventual type. We then study basic properties of strict Morley sequences, based on Shelahs notion of strict nonforking. In particular we prove Kims lemma for such sequences, and a weak version of local character.
This report introduces and investigates a family of metrics on sets of pointed Kripke models. The metrics are generalizations of the Hamming distance applicable to countably infinite binary strings and, by extension, logical theories or semantic structures. We first study the topological properties of the resulting metric spaces. A key result provides sufficient conditions for spaces having the Stone property, i.e., being compact, totally disconnected and Hausdorff. Second, we turn to mappings, where it is shown that a widely used type of model transformations, product updates, give rise to continuous maps in the induced topology.
In partial answer to a question posed by Arnie Miller (http://www.math.wisc.edu/~miller/res/problem.pdf) and X. Caicedo, we obtain sufficient conditions for an L_{omega_1,omega} theory to have an independent axiomatization. As a consequence we obtain two corollaries: The first, assuming Vaughts Conjecture, every L_{omega_1,omega} theory in a countable language has an independent axiomatization. The second, this time outright in ZFC, every intersection of a family of Borel sets can be formed as the intersection of a family of independent Borel sets.